972 resultados para Reticulum endoplasmique
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
A case of fulminat hepatitis with microvesicular steatosis resembling Labrea 's fever, diagnosed in Vitoria (ES) is reported. The 16 year old bcy presented with severe epistaxis, agitation, jaundice and hemorrhagic vomiting and died two days after admission to the emergency unit of the Vnivesity Hospital. The disease started five days before with fever, myalgias, dark urine and jaundice andprogressed withpsychic agitation, torpor and coma. The liver andspleen were notpalpable. HBsAg was negative in the serum. The autopsy showed acute hepatitis with tylic necrosis confluent in the midizonal and periportal areas with massive microvesicular steatosis in the remaining hepatocytes. Mononuclear cellspredominated in the exudate. The reticulum showed condensation in the necrotic areas without typical bands of collapse. The portal tracts were edematous with mononuclear infiltration and mild bile duct proliferation. Absence of cholestasis. Exceptfor the confluent midzonalandperiportal necrosis this case showed several clinical and morphological aspects of the Labreafever describedfrom the East Amazon, demonstrating that the anatomical picture of this disease probabty is not in related to afactor peculiar to the Amazon region.
Resumo:
The Unfolded Protein Response (UPR) is a signaling pathway that is activated by an accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) that causes ER stress. The activation of the UPR aims to restore ER homeostasis by attenuation of ER client protein translation, increased transcription of ER chaperones and ER associated degradation (ERAD) factors. If ER stress is too long or too strong, cells may die. The main signaling branch of the UPR is mediated by the ER transmembrane protein IRE1 and the transcription factor Xbp1. The active, spliced form of Xbp1 (Xbp1spliced) acts as a transcription factor with protective function against toxic protein aggregation. However, overexpression of Xbp1spliced in the developing Drosophila eye causes degeneration of the eye (“glossy” eye phenotype).(...)
Resumo:
Dissertação de mestrado em Bioquímica Aplicada – Biomedicina
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Background: The activation of the beta-adrenergic system promotes G protein stimulation that, via cyclic adenosine monophosphate (cAMP), alters the structure of protein kinase A (PKA) and leads to phospholamban (PLB) phosphorylation. This protein participates in the system that controls intracellular calcium in muscle cells, and it is the primary regulator of sarcoplasmic reticulum calcium pump activity. In obesity, the beta-adrenergic system is activated by the influence of increased leptin, therefore, resulting in higher myocardial phospholamban phosphorylation via cAMP-PKA. Objective: To investigate the involvement of proteins which regulate the degree of PLB phosphorylation due to beta-adrenergic activation in obesity. In the present study, we hypothesized that there is an imbalance between phospholamban phosphorylation and dephosphorylation, with prevalence of protein phosphorylation. Methods: Male Wistar rats were randomly distributed into two groups: control (n = 14), fed with normocaloric diet; and obese (n = 13), fed with a cycle of four unsaturated high-fat diets. Obesity was determined by the adiposity index, and protein expressions of phosphatase 1 (PP-1), PKA, PLB, phosphorylated phospholamban at serine16 (PPLB-Ser16) were assessed by Western blot. Results: Obesity caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia and did not alter the protein expression of PKA, PP-1, PLB, PPLB-Ser16. Conclusion: Obesity does not promote an imbalance between myocardial PLB phosphorylation and dephosphorylation via beta-adrenergic system.
Resumo:
The sternal glands of the abdomen of Oxaea flavescens (Klug, 1807) consist of class III glandular cells around a reservoir constituted by branched folds of the intersegmental membrane of segments III, IV and V. The gland cells are rich in rough endoplasmic reticulum and produce a secretion with mucous aspect. The treatment with oxidated osmium and ruthenium red showed numerous Golgi regions in the cell and carbohydrates absorption from the haemolymph, respectively. The high degree of development of the glands suggests an important function to the species, although still unknown.
Resumo:
In Fortsentzung des Kataloges der suedbrasilianischen Baumpollen untersuchten wir die Familien Cunoniaceae, Rosaceae und Connaraceae. Die erste besitzt sehr kleine Pollenkoerner, mit zwei (Lamanonia speciosa) oder drei colpori und netzartigen Ober-flaechen. Die Rosaceen haben groessere Koerner mit drei colpori und such, ausser Licania sp., feinere netzartige und gerillte Sexine. Die Connaraceen, mit drei colpori, haben ein etwas grossmaschigeres reticulum. Groessere Aehnlichkeiten wurden festgestellt zwischen den Pollenkoernern der Connaraceae und den der Dilleniaceae und Marcgraviaceae. Mit sicherheit konnten wir keine phylogenetische Reihenfolge der Pollenkoerner der drei bearbeiteten Familien aufstellen.
Resumo:
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.
Resumo:
Glutamate and the N-methyl-D-aspartate receptor ligand D-serine are putative gliotransmitters. Here, we show by immunogold cytochemistry of the adult hippocampus that glutamate and D-serine accumulate in synaptic-like microvesicles (SLMVs) in the perisynaptic processes of astrocytes. The estimated concentration of fixed glutamate in the astrocytic SLMVs is comparable to that in synaptic vesicles of excitatory nerve terminals (∼45 and ∼55 mM, respectively), whereas the D-serine level is about 6 mM. The vesicles are organized in small spaced clusters located near the astrocytic plasma membrane. Endoplasmic reticulum is regularly found in close vicinity to SLMVs, suggesting that astrocytes contain functional nanodomains, where a local Ca(2+) increase can trigger release of glutamate and/or D-serine.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
Ultrastructural analyses revealed the presence of six hemocyte types in the hemolymph of Panstrogylus megistus, partially confirming our previous results obtained through light microscopy. Prohemocytes: small, round hemocytes with a thin cytoplasm layer, espcieally rich in free ribosomes and poor in membranous systems. Plasmatocytes: polymorphic cells, whose cytoplasm contains many lysosomes and a well developed rough endoplasmic reticulum (RER).They are extremely phagocytic. Sometimes, they show a large vacuolation. Granulocytes: granular hemocytes whose granules show different degrees of electrondensity. Most of them, have an internal structuration. Coagulocytes: oval or elongated hemocytes, which show pronounced perinuclear cisternae as normally observed in coagulocytes. The cytoplasm is usually electrondense, poor in membranous systems and contains many labile granules. Oenocytoids: large and very stable hemocytes, whose homogeneous cytoplasme is rich in loose ribosomes and poor in membranous systems. Adipohemocytes: large cells, containing several characteristic lipid droplets. The cytoplasm is also rich in glycogen, RER and large mitochondria. The total and differential hemocyte count (THC and DHC) were also calculated for this reduviid. THC increases from 2,900 hemocytes/cubic millimeter of hemolymph in the 4th intar to 4,350 in the 5th and then, decreases to 1,950 in the adults. Plasmatocytes and coagulocytes are the predominant hemocyte types.
Resumo:
Cells infected by the hepatitis C virus (HCV) are characterized by endoplasmic reticulum stress, deregulation of the calcium homeostasis and unbalance of the oxido-reduction state. In this context, mitochondrial dysfunction proved to be involved and is thought to contribute to the outcome of the HCV-related disease. Here, we propose a temporal sequence of events in the HCV-infected cell whereby the primary alteration consists of a release of Ca(2+) from the endoplasmic reticulum, followed by uptake into mitochondria. This causes successive mitochondrial alterations comprising generation of reactive oxygen and nitrogen species and impairment of the oxidative phosphorylation. A progressive adaptive response results in an enhancement of the glycolytic metabolism sustained by up-regulation of the hypoxia inducible factor. Pathogenetic implications of the model are discussed.