952 resultados para REACTIVE MECHANISM
Resumo:
Current Manufacturing Systems challenges due to international economic crisis, market globalization and e-business trends, incites the development of intelligent systems to support decision making, which allows managers to concentrate on high-level tasks management while improving decision response and effectiveness towards manufacturing agility. This paper presents a novel negotiation mechanism for dynamic scheduling based on social and collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term for several computational techniques, which use ideas and inspiration from the social behaviors of insects and other biological systems. This work is primarily concerned with negotiation, where multiple self-interested agents can reach agreement over the exchange of operations on competitive resources. Experimental analysis was performed in order to validate the influence of negotiation mechanism in the system performance and the SI technique. Empirical results and statistical evidence illustrate that the negotiation mechanism influence significantly the overall system performance and the effectiveness of Artificial Bee Colony for makespan minimization and on the machine occupation maximization.
Resumo:
The need to increase agricultural yield led, among others, to an increase in the consumption of nitrogen based fertilizers. As a consequence, there are excessive concentrations of nitrates, the most abundant of the reactive nitrogen (Nr) species, in several areas of the world. The demographic changes and projected population growth for the next decades, and the economic shifts which are already shaping the near future are powerful drivers for a further intensification in the use of fertilizers, with a predicted increase of the nitrogen loads in soils. Nitrate easily diffuses in the subsurface environments, portraying high mobility in soils. Moreover, the presence of high nitrate loads in water has the potential to cause an array of health dysfunctions, such as methemoglobinemia and several cancers. Permeable Reactive Barriers (PRB) placed strategically relatively to the nitrate source constitute an effective technology to tackle nitrate pollution. Ergo, PRB avoid various adverse impacts resulting from the displacement of reactive nitrogen downstream along water bodies. A four stages literature review was carried out in 34 databases. Initially, a set of pertinent key words were identified to perform the initial databases searches. Then, the synonyms of those initial key words were used to carry out a second set of databases searches. The third stage comprised the identification of other additional relevant terms from the research papers identified in the previous two stages. Again, databases searches were performed with this third set of key words. The final step consisted of the identification of relevant papers from the bibliography of the relevant papers identified in the previous three stages of the literature review process. The set of papers identified as relevant for in-depth analysis were assessed considering a set of relevant characterization variables.
Resumo:
Nitrat e (NO3 - ) i s per vasi ve i n t he bi ospher e[ 1, 2]. Cont emporar y agri cult ural pr acti ces are a mong t he maj or ant hr opogeni c sources of r eacti ve nitrogen speci es, wher e nitrat ei s t he most abundant of t hese [ 2]. Excessi ve a mount s of r eacti ve nitrogen i n soil s and gr oundwat er ar e creati ng si gnifi cant t hr eat s t o hu man healt h and saf et y [ 3] as well as a host of undesirabl e environment al i mpact s [ 2]; it i s curr ently consi der ed t he second most r el evant environment al i ssue, aft er car bon di oxide e mi ssi ons. Nowadays, a mong t he most r el evant and pr omi si ng appr oaches t o r educe nitrat e concentrati on i n wat er, na mel y gr oundwat er, ar e denitrifi cati on- based pr ocesses [ 4]. Per meabl e r eacti ve barri ers ( PRB) have been pr oven eff ecti ve i n r educi ng vari ous cont ami nant s i n copi ous a mount s, parti cul arl y i n shall ow gr oundwat er [ 5]. However t he possi bl e added eff ecti veness of usi ng nanoparti cl es i n t hese structur es t o obt ai n nitrogen gas from nitrat es requires f urt her i nvesti gati on.
Resumo:
Sera from patients infected with Taenia solium, Hymenolepis nana and Echinococcus granulosus were tested against homologous and heterologous parasite antigens using an ELISA assay, and a high degree of cross-reactivity was verified. To identify polypeptides responsible for this cross reactivity, the Enzyme Linked Immunoelectro Transfer Blot (EITB) was used. Sera from infected patients with T.solium, H.nana, and E.granulosus were assessed against crude, ammonium sulphate precipitated (TSASP), and lentil-lectin purified antigens of T.solium and crude antigens of.H.nana and E.granulosus. Several bands, recognized by sera from patients with T.solium, H.nana, and E.granulosus infections, were common to either two or all three cestodes. Unique reactive bands in H.nana were noted at 49 and 66 K-Da and in E.granulosus at 17-21 K-Da and at 27-32 K-Da. In the crude cysticercosis extract, a specific non glycoprotein band was present at 61-67 K-Da in addiction to specific glycoprotein bands of 50, 42, 24, 21, 18, 14, and 13 K-Da. None of the sera from patients with H.nana or E.granulosus infection cross reacted with these seven glycoprotein bands considered specific for T.solium infection.
Resumo:
The reactive power management in distribution network with large penetration of distributed energy resources is an important task in future power systems. The control of reactive power allows the inclusion of more distributed recourses and a more efficient operation of distributed network. Currently, the reactive power is only controlled in large power plants and in high and very high voltage substations. In this paper, several reactive power control strategies considering a smart grids paradigm are proposed. In this context, the management of distributed energy resources and of the distribution network by an aggregator, namely Virtual Power Player (VPP), is proposed and implemented in a MAS simulation tool. The proposed methods have been computationally implemented and tested using a 32-bus distribution network with intensive use of distributed resources, mainly the distributed generation based on renewable resources. Results concerning the evaluation of the reactive power management algorithms are also presented and compared.
Resumo:
This review discusses experimental evidences that indicate the IgE participation on the effector mechanisms that leads to gastrointestinal nematode elimination. Data discussed here showed that, for most experimental models, the immune response involved in nematode elimination is regulated by Th-2 type cytokines (especially IL-4). However, the mechanism(s) that result in worm elimination is not clear and might be distinct in different nematode species. Parasite specific IgE production, especially the IgE produced by the intestinal mucosae or associated lymphoid organs could participate in the intestinal elimination of Trichinella spiralis from infected rats. Intestinal IgE may also be important to the protective mechanism developed against other gastrointestinal nematodes that penetrate the murine duodenum mucosa tissue, such as Strongyloides venezuelensis and Heligmosomoides polygyrus. At least in Trichinella spiralis infected rats, the results indicated that intestinal IgE might work independently from mast cell degranulation for worm elimination.
Resumo:
A presença de metais pesados no meio ambiente deve-se, principalmente, a actividades antropogénicas. Ao contrário do Cu e do Zn, que em baixas concentrações são essenciais para o normal funcionamento celular, não se conhece para o chumbo nenhuma função biológica. O chumbo apresenta efeitos tóxicos, e considerado possível agente carcinogéneo, sendo classificado como poluente prioritário pela Agencia de Protecção Ambiental dos EUA (US-EPA). O presente trabalho teve como objetivo avaliar o papel da glutationa e do vacúolo, como mecanismos de defesa, contra os efeitos tóxicos induzidos pelo chumbo, usando como modelo a levedura Saccharomyces cerevisiae. A levedura S. cerevisiae quando exposta a varias concentrações de chumbo, durante 3h, perde a viabilidade e acumula espécies reativas de oxigénio (ROS). O estudo comparativo da perda de viabilidade e acumulação de ROS em células de uma estirpe selvagem (WT) e de estirpes mutantes, incapazes de produzir glutationa devido a uma deficiência no gene GSH1 (gsh1) ou GSH2 (gsh2) mostrou que as estirpes gsh1 ou(gsh2 não apresentavam um aumento da sensibilidade ao efeito toxico do chumbo. No entanto, o tratamento de células da estirpe WT com iodoacetamida (um agente alquilante que induz a depleção de glutationa) aumentou a sensibilidade das células a presença de chumbo. Pelo contrário, o enriquecimento em GSH, através da incubação de células WT com glucose e uma mistura de aminoácidos que constituem a GSH (acido L-glutâmico, L-cisteína e glicina), reduziu o stress oxidativo e a perda de viabilidade induzida por chumbo. A importância do vacúolo, como mecanismo de defesa, foi avaliada através da utilização de um mutante sem qualquer estrutura vacuolar (vps16) ou de mutantes deficientes na subunidade catalítica A (vma1) ou B (vma2) ou no proteolítico - subunidade C (vma3) da V-ATPase. As células da estirpe ƒ´vps16 apresentaram uma elevada suscetibilidade a presença de chumbo. As células das estirpes deficientes na subunidade A, B ou c da V-ATPase, apresentaram uma maior perda de viabilidade, quando expostas a chumbo, do que as células da estirpe WT, mas menor do que a da estirpe vps16 Em conclusão, os resultados obtidos, no seu conjunto, sugerem que a glutationa esta envolvida na defesa contra a toxicidade provocada por chumbo; todavia, a glutationa, por si só, parece não ser suficiente para suster o stress oxidativo e a perda de viabilidade induzida por chumbo. O vacúolo parece constituir um importante mecanismo de defesa contra a toxicidade provocada por chumbo. A V-ATPase parece estar envolvida na compartimentação de chumbo no vacúolo.
Resumo:
Self-inflicted burns (SIB) are responsible for 2-6% of admissions to Burn Units in Europe and North America, and for as many as 25% of admissions in developing nations. Recently, a promising new tool was proposed to stratify SIB patients in the following subgroups: "typical", "delirious", and "reactive". However, as far as the authors know, the clinical usefulness of this instrument has not yet been validated by others. We retrospectively reviewed the clinical records of 56 patients admitted to our Burn Unit with the diagnosis of SIB injury in the past 14 years. The following parameters were evaluated: demographic features; psychiatric illness; substance abuse; mechanism of injury; burn depth, total body surface area (TBSA) involved, Abbreviated Burn Severity Index (ABSI); length of hospital stay, and mortality. All patients were followed up by a psychologist and a psychiatrist, and were classified according to the SIB-Typology Tool, into three classes: "typical", "delirious" and "reactive". There was a slight predominance of the "typical" type (44.6%), followed by the "delirious" type (30.4%), and, finally the "reactive" type (25.0%). Mortality was significantly higher in the "typical" subgroup. In conclusion, the SIB-Typology Tool appears to be a valuable instrument in the clinical management of SIB patients.
Resumo:
Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.
Resumo:
The 6loWPAN (the light version of IPv6) and RPL (routing protocol for low-power and lossy links) protocols have become de facto standards for the Internet of Things (IoT). In this paper, we show that the two native algorithms that handle changes in network topology – the Trickle and Neighbor Discovery algorithms – behave in a reactive fashion and thus are not prepared for the dynamics inherent to nodes mobility. Many emerging and upcoming IoT application scenarios are expected to impose real-time and reliable mobile data collection, which are not compatible with the long message latency, high packet loss and high overhead exhibited by the native RPL/6loWPAN protocols. To solve this problem, we integrate a proactive hand-off mechanism (dubbed smart-HOP) within RPL, which is very simple, effective and backward compatible with the standard protocol. We show that this add-on halves the packet loss and reduces the hand-off delay dramatically to one tenth of a second, upon nodes’ mobility, with a sub-percent overhead. The smart-HOP algorithm has been implemented and integrated in the Contiki 6LoWPAN/RPL stack (source-code available on-line mrpl: smart-hop within rpl, 2014) and validated through extensive simulation and experimentation.
Resumo:
It is unquestionable that an effective decision concerning the usage of a certain environmental clean-up technology should be conveniently supported. Significant amount of scientific work focussing on the reduction of nitrate concentration in drinking water by both metallic iron and nanomaterials and their usage in permeable reactive barriers has been worldwide published over the last two decades. This work aims to present in a systematic review of the most relevant research done on the removal of nitrate from groundwater using nanosized iron based permeable reactive barriers. The research was based on scientific papers published between 2004 and June 2014. It was performed using 16 combinations of keywords in 34 databases, according to PRISMA statement guidelines. Independent reviewers validated the selection criteria. From the 4161 records filtered, 45 met the selection criteria and were selected to be included in this review. This study's outcomes show that the permeable reactive barriers are, indeed, a suitable technology for denitrification and with good performance record but the long-term impact of the use of nanosized zero valent iron in this remediation process, in both on the environment and on the human health, is far to be conveniently known. As a consequence, further work is required on this matter, so that nanosized iron based permeable reactive barriers for the removal of nitrate from drinking water can be genuinely considered an eco-efficient technology.
Resumo:
Toxic effects of ultraviolet (UV) radiation on skin include protein and lipid oxidation, and DNA damage. The latter is known to play a major role in photocarcinogenesis and photoaging. Many plant extracts and natural compounds are emerging as photoprotective agents. Castanea sativa leaf extract is able to scavenge several reactive species that have been associated to UV-induced oxidative stress. The aim of this work was to analyze the protective effect of C. sativa extract (ECS) at different concentrations (0.001, 0.01, 0.05 and 0.1 μg/mL) against the UV mediated-DNA damage in a human keratinocyte cell line (HaCaT). For this purpose, the cytokinesis-block micronucleus assay was used. Elucidation of the protective mechanism was undertaken regarding UV absorption, influence on 1O2 mediated effects or NRF2 activation. ECS presented a concentration-dependent protective effect against UV-mediated DNA damage in HaCaT cells. The maximum protection afforded (66.4%) was achieved with the concentration of 0.1 μg/mL. This effect was found to be related to a direct antioxidant effect (involving 1O2) rather than activation of the endogenous antioxidant response coordinated by NRF2. Electrochemical studies showed that the good antioxidant capacity of the ECS can be ascribed to the presence of a pool of different phenolic antioxidants. No genotoxic or phototoxic effects were observed after incubation of HaCaT cells with ECS (up to 0.1 μg/mL). Taken together these results reinforce the putative application of this plant extract in the prevention/minimization of UV deleterious effects on skin.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Introduction: C-reactive protein (CRP) and Bedside Index for Severity in Acute Pancreatitis (BISAP) have been used in early risk assessment of patients with AP. Objectives: We evaluated prognostic accuracy of CRP at 24 hours after hospital admission (CRP24) for in-hospital mortality (IM) in AP individually and with BISAP. Materials and Methods: This retrospective cohort study included 134 patients with AP from a Portuguese hospital in 2009---2010. Prognostic accuracy assessment used area under receiver---operating characteristic curve (AUC), continuous net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results: Thirteen percent of patients had severe AP, 26% developed pancreatic necrosis, and 7% died during index hospital stay. AUCs for CRP24 and BISAP individually were 0.80 (95% confidence interval (CI) 0.65---0.95) and 0.77 (95% CI 0.59---0.95), respectively. No patients with CRP24 <60 mg/l died (P = 0.027; negative predictive value 100% (95% CI 92.3---100%)). AUC for BISAP plus CRP24 was 0.81 (95% CI 0.65---0.97). Change in NRI nonevents (42.4%; 95% CI, 24.9---59.9%) resulted in positive overall NRI (31.3%; 95% CI, − 36.4% to 98.9%), but IDI nonevents was negligible (0.004; 95% CI, − 0.007 to 0.014). Conclusions: CRP24 revealed good prognostic accuracy for IM in AP; its main role may be the selection of lowest risk patients.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology