278 resultados para RAF
Resumo:
Background: K-ras mutation is found in up to 40% of LARC. Sor is a multitarget tyrosine kinase inhibitor including raf and VEGFR and has demonstrated radiosensitizing effects. Sor might improve outcome of standard preoperative radio-chemotherapy in patients with k-ras mutated LARC. Methods: Pts with k-ras mutated T3-4 and/or N+, M0 disease by MRI were included. Recommended doses from phase I part consisted of RT 1.8 Gy/day x25 with Cape 825mg/m2bid x 33 in combination with Sor 400mg/d. The primary endpoint for the phase II part was pathological complete response (pCR) prospectively defined as grade 3 (near complete regression) or 4 (complete regression) in the histological grading system according to Dworak (DC). A pCR rate of 8% or lower was considered uninteresting and of 22% or higher was promising. Secondary endpoints included sphincter preservation, R0 resection, downstaging and safety. Results: 54 pts were treated in 18 centers in Switzerland und Hungary, 40 pts were included into the single arm phase II part. Median dose intensity per day was 100.0% for RT, 98.6% for Cape and 100.0% for Sor respectively. pCR rate was 60.0% (95%CI: 43.3%, 75.1%) by central independent pathological review (15.0% DC grade 4; 45.0% DC grade 3). Sphincter preservation was achieved in 89.5%, R0 resection in 94.7% and downstaging in 81.6% of the pts. The most common grade 3 toxicities included diarrhea (15.0%), skin toxicity outside of the RT field (12.5%), pain (7.5%), skin toxicity in RT field, proctitis, fatigue and cardiac ischemia (each 5.0%). Laboratory AEs grade 3/4 were neutropenia (1 pt grade 4; 1 grade 3), creatinine elevation (1 pt grade 3). Conclusions: The combination of Sor to standard RCT with Cape in k-ras mutated LARC tumors is highly active with acceptable toxicity and deserves further investigation.
Resumo:
Wydział Historyczny: Instytut Historii
Resumo:
The effects of plant density and the number of emitters per Styrofoam box on plant growth and nitrate (NO3-) concentration were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrate and were grown during winter in an unheated greenhouse with no supplemental lighting. The experiment was carried out with four treatments, including two plant densities (160 and 280 plants/m2) and two number of emitters per Styrofoam box (4 and 8 emitters). Each planting box was irrigated daily and fertigated with a complete nutrient solution. Shoot dry weight was not affected by plant density. However, yield increased with plant density and emitter number. Leaf-blade NO3- concentration was not affected by the interaction between plant density and number of emitters, but petioles NO3- concentration was greater in treatment with 160 plants/m2 and 8 emitters. Although leaf-blade NO3- concentration was not affected by plant density, it decreased with the number of emitters. On the other hand, petiole NO3- concentration was not affected by plant density or number of emitters. Leaf-blade NO3- concentration ranged from 3.2 to 4.1 mg/g fresh weight, occurring the highest value in the treatment with 280 plants/m2 and 4 emitters. Petiole NO3- concentration ranged from 3.5 to 5.3 mg/g fresh weight, values that were higher than allowed by EU regulation.
Resumo:
Abstract The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N. Keywords Spinacia oleracea; chlorophyll meter; coir; peat; soilless culture systems
Resumo:
Purslane (Portulaca oleracea) is widely used for culinary purposes throughout Mediterranean region, and the interest in this plant increased due to it being a source of bio-protective compounds, such as fatty acids and antioxidants. However, the use of purslane could be limited by accumulation of high levels of compounds harmful to human health, such as nitrate and oxalic acid. The main objective of present study was to evaluate the influence of nitrogen fertilization on growth and yield parameters and on nitrate and oxalic acid concentrations in leaves and stems. Plants of golden-leafed purslane of sativa subspecies were grown in styro-foam boxes with substrate and fertilized two times per week during four weeks with ammonium-nitrate solution (16.9% NO3--N and 17.6% NH4+-N), for testing of four nitrogen levels (0, 30, 60 and 90 kg N ha-1). Plant growth, yield, nitrate and oxalic acid concentrations were significantly affected by nitrogen application. The best quantity/quality ratio was achieved at fertilization level of 60 kg N ha-1, which gave a yield of 5.1 kg m-2 FW, while nitrate concentration was 48.98 and 43.90 mg g-1 DW in leaf and stem, respectively, and oxalic acid concentration was 1.27 and 0.55 mg g-1 DW, in leaf and stem, respectively: values which are not harmful for consumer health.
Resumo:
The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N.
Resumo:
The high antioxidant activity of purslane, Portulaca oleracea L., gives it a high nutritional and functional value. The commercial production of purslane has increased in Portugal, making it necessary to know the effects of inputs, mainly nitrogen, on the antioxidant activity. The main goal of this study was to evaluate the influence of nitrogen application on purslane antioxidant activity. The experiment was carried out with for treatments: 30, 60 and 90 kg/ha of nitrogen. Plants of golden-leaf purslane were grown in Styrofoam-boxes filled with substrate and fertigated two times per week, over four weeks with ammonium nitrate solution (16.9% NO3-N and 16.7 NH4+-N). The increase in the nitrogen level decreased the water-soluble proteins content. However the ascorbate, phenols content as well as antioxidant activity measured by FRAP method was not affected by nitrogen level. Plants shoot antioxidant activity, measured by DPPH method decreased significantly in the treatment with 90 kg N/ha (26.20 g/g gallic acid). On the other hand, plant shoot antioxidant activity mediated by peroxidases was higher in treatment 30 kg N/ha (0.459 µmol min-1/mg prot.). Application of 60 kg N/ha allowed a vigorous plant growth without disturb its antioxidants and conservation properties.