985 resultados para Pre-consolidation pressure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of a series of specific penta- and tetra-amine derivatives of Co-III and Cr-III with a neutral leaving ligand has been carried out in order to accomplish a fine tuning of the associativeness/dissociativeness of their substitution reactions. Spontaneous aquation reactions of the neutral ligands have been studied at variable temperature and pressure. Although rate constants and thermal activation parameters show an important degree of scatter, the values determined for the activation volumes of the substitution process illustrate the mechanistic fine tuning that may be achieved for these reactions. In all cases, in the absence of important steric constraints in the molecule, electronic inductive effects seem to be the most important factor accounting for the dissociative shifts observed both for pentaamine (i.e.Delta V double dagger=+4.0 or +14.0 cm(3) mol(-1) and +5.2 or +16.5 cm(3) mol(-1) for the aquation of cis- or trans-[Co(MeNH2)(NH3)(4)(DMF)](3+) and cis- or trans-[CoL15(DMF)](3+) respectively, where L-15 represents a pentaamine macrocyclic ligand), and tetraamine systems (i.e.Delta V double dagger=+4.1 or +8.4 cm(3) mol(-1) and -10.8 or -7.4 cm(3) mol(-1) for the aquation of cis-[Co(NH3)(4)Cl(DMAC)](2+) (DMAC=dimethylacetamide) or cis-[Co(en)(2)Cl(DMAC)](2+) and cis-[Cr(NH3)(4)Cl(DMF)](2+) or cis -[Cr(en)(2)Cl(DMF)](2+)). From the results, clear evidence is obtained which indicates that, only when the situation is borderline I-a/I-d, or the steric demands are increased dramatically, dissociative shifts are observed; in all other cases electronic inductive effects seem to be dominant for such a tuning of the substitution process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximate to 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P < 0.05) between 15 and 25 min of exercise. Consequently, heat storage increased (P < 0.003) from 84.0 +/- 8.8 W . m(-2) to 153 +/- 13.1 W . m(-2) (mean +/- s((x) over bar)) after pre-cooling, while total body sweat fell from 1.7 +/- 0.1 1 . h(-1) to 1.2 +/- 0.1 1 . h(-1) (P < 0.05). The distance cycled increased from 14.9 +/- 0.8 to 15.8 +/- 0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans, when the stability of the trunk is challenged in a controlled manner by repetitive movement of a limb, activity of the diaphragm becomes tonic but is also modulated at the frequency of limb movement. In addition, the tonic activity is modulated by respiration. This study investigated the mechanical output of these components of diaphragm activity. Recordings were made of costal diaphragm, abdominal, and erector spinae muscle electromyographic activity; intra-abdominal, intrathoracic, and transdiaphragmatic pressures; and motion of the rib cage, abdomen, and arm. During limb movement the diaphragm and transversus abdominis were tonically active with added phasic modulation at the frequencies of both respiration and limb movement. Activity of the other trunk muscles was not modulated by respiration. Intra-abdominal pressure was increased during the period of limb movement in proportion to the reactive forces from the movement. These results show that coactivation of the diaphragm and abdominal muscles causes a sustained increase in intra-abdominal pressure, whereas inspiration and expiration are controlled by opposing activity of the diaphragm and abdominal muscles to vary the shape of the pressurized abdominal cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To facilitate the investigation of free mycophenolic acid concentrations we developed a high-performance liquid chromatography tandem mass spectrometry method using indomethacin as an internal standard. Free drug was isolated from plasma samples (500 mul) using ultrafiltration, The analytes were extracted from the ultrafiltrate (200 mul) using C-18 solid-phase extraction. Detection was by selected reactant monitoring of mycophenolic acid (m/z 318.9-->190.9) and the internal standard (m/z 356.0-->297.1) with an atmospheric pressure chemical ionisation interface. The total chromatographic analysis time was 12 min. The method was found to be linear over the range investigated, 2.5-200 mug/l (r>0.990, n=6). The relative recovery of the method for the control samples studied (7.5, 40.0 and 150 mug/l) ranged from 95 to 104%. The imprecision of the method, expressed in terms of intra- and inter-day coefficients of variation, was

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP-without concurrent activity of the abdominal or back extensor muscles-produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to similar to 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (similar to6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Recent evidence suggests that cortical activity associated with voluntary movement is relatively shifted from medial to lateral premotor areas in Parkinson's disease. This shift occurs bilaterally even for unilateral responses. It is not clear whether the shift in processing reflects an overall change in movement strategy, thereby involving alternate cortical areas, or reflects a compensatory change whereby, given the appropriate conditions, less impaired cortical areas are able to provide a similar function in compensation for those areas which are more impaired. This issue was examined in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. Methods: Fourteen patients with hemi-Parkinson's disease and 15 age-matched control subjects performed a Go/NoGo finger movement task and the contingent negative variation (CNV) was recorded from 21 scalp positions. Results and conclusions: Maximal CNV amplitudes were found over central medial regions for control subjects, but were shifted more frontally for Parkinson's disease patients, reduced in amplitude over the midline and lateralized towards the side ipsilateral to the greatest basal ganglia impairment. This shift in cortical activity from medial to lateral areas in Parkinson's disease patients appears to reflect a compensatory mechanism operating predominantly on the side of greatest basal ganglia impairment. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While there is a developing understanding of the influence of sleep on cardiovascular autonomic activity in humans, there remain unresolved issues. In particular, the effect of time within the sleep period, independent of sleep stage, has not been investigated. Further, the influence of sleep on central sympathetic nervous system (SNS) activity is uncertain because results using the major method applicable to humans, the low frequency (LF) component of heart rate Variability (HRV), have been contradictory, and because the method itself is open to criticism. Sleep and cardiac activity were measured in 14 young healthy subjects on three nights. Data was analysed in 2-min epochs. All epochs meeting specified criteria were identified, beginning 2 h before, until 7 h after, sleep onset. Epoch values were allocated to 30-min bins and during sleep were also classified into stage 2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The measures of cardiac activity were heart irate (HR), blood pressure (BP), high frequency (HF) and LF components of HRV and pre-ejection period (PEP). During non-rapid eye movement (NREM) sleep autonomic balance shifted from sympathetic to parasympathetic dominance, although this appeared to be more because of a shift in parasympathetic nervous system (PNS) activity. Autonomic balance during REM was in general similar to wakefulness. For BP and the HF and LF components the change occurred abruptly at sleep onset and was then constant over time within each stage of sleep, indicating that any change in autonomic balance over the sleep period is a consequence of the changing distribution of sleep stages. Two variables, HR and PEP, did show time effects reflecting a circadian influence over HR and perhaps time asleep affecting PEP. While both the LF component and PEP showed changes consistent with reduced sympathetic tone during sleep, their pattern of change over time differed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Respiratory activity of the diaphragm and other respiratory muscles is normally co-ordinated with their other functions, such as for postural control of the trunk when the limbs move. The integration may occur by summation of two inputs at the respiratory motoneurons. The present study investigated whether postural activity of the diaphragm changed when respiratory drive increased with hypercapnoea. 2. Electromyographic (EMG) recordings of the diaphragm and other trunk muscles were made with intramuscular electrodes in 13 healthy volunteers. Under control conditions and while breathing through increased dead-space,subjects made rapid repetitive arm movements to disturb the stability of the spine for four periods each lasting 10 s, separated by 50 s. 3. End-tidal CO2, and ventilation increased for the first 60-120 s of the trial then reached a plateau. During rapid arm movement at the start of dead-space breathing, diaphragm EMG became tonic with superimposed modulation at the frequencies of respiration and arm movement. However, when the arm was moved after 60 s of hypercapnoea, the tonic diaphragm EMG during expiration and the phasic activity with arm movement were reduced or absent. Similar changes occurred for the expiratory muscle transversus abdominis, but not for the erector spinae. The mean amplitude of intra-abdominal pressure and the phasic changes with arm movement were reduced after 60 s of hypercapnoea. 4. The present data suggest that increased central respiratory drive may attenuate the postural commands reaching motoneurons. This attenuation can affect the key inspiratory and expiratory muscles and is likely to be co-ordinated at a pre-motoneuronal site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positive end expiratory pressure (PEEP) is important for neonatal ventilation but is not considered in guidelines for resuscitation. Our aim was to investigate the effects of PEEP on cardiorespiratory parameters during resuscitation of very premature lambs delivered by hysterotomy at similar to125 d gestation (term similar to147 d). Before delivery, they were intubated and lung fluid was drained. Immediately after delivery, they were ventilated with a Drager Babylog plus ventilator in volume guarantee mode with a tidal volume of 5 mL/kg. Lambs were randomized to receive 0, 4, 8, or 12 cm H2O of PEEP. They were ventilated for a 15-min resuscitation period followed by 2 h of stabilization at the same PEEP. Tidal volume, peak inspiratory pressure, PEEP, arterial pressure, oxygen saturation, and blood gases were measured regularly, and respiratory system compliance and alveolar/ arterial oxygen differences were calculated. Lambs that received 12 cm H2O of PEEP died from pneumothoraces; all others survived without pneumothoraces. Oxygenation was significantly improved by 8 and 12 cm H2O of PEEP compared with 0 and 4 cm H2O of PEEP. Lambs with 0 PEEP did not oxygenate adequately. The compliance of the respiratory system was significantly higher at 4 and 8 cm H2O of PEEP than at 0 PEEP. There were no significant differences in partial pressure of carbon dioxide in arterial blood between groups. Arterial pressure was highest with 8 cm H2O of PEEP, and there was no cardiorespiratory compromise at any level of PEEP. Applying PEEP during resuscitation of very premature infants might be advantageous and merits further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Obesity and obstructive sleep apnea (OSA) are both associated with the prevalence of major cardiovascular illnesses and certain common factors they are considered responsible for, such as stress oxidative increase, sympathetic tonus and resistance to insulin. Objective: The aim of the present study was to compare the effect of continuous positive airway pressure (CPAP) on oxidative stress and adiponectin levels in obese patients with and without OSA. Methods: Twenty-nine obese patients were categorized into 3 groups: group 1: 10 individuals without OSA (apnea-hypopnea index, AHI <= 5) who did not have OSA diagnosed at polysomnography; group 2: 10 patients with moderate to severe OSA (AHI >= 20) who did not use CPAP; group 3: 9 patients with moderate to severe OSA (AHI >= 20) who used CPAP. Results: Group 3 showed significant differences before and after the use of CPAP, in the variables of diminished production of superoxide, and increased nitrite and nitrate synthesis and adiponectin levels. Positive correlations were seen between the AHI and the superoxide production, between the nitrite and nitrate levels and the adiponectin levels, between superoxide production and the HOMA-IR, and between AHI and the HOMA-IR. Negative correlations were found between AHI and the nitrite and nitrate levels, between the superoxide production and that of nitric oxide, between the superoxide production and the adiponectin levels, between AHI and the adiponectin levels, and between the nitrite and nitrate levels and the HOMA-IR. Conclusions: This study demonstrates that the use of CPAP can reverse the increased superoxide production, the diminished serum nitrite, nitrate and plasma adiponectin levels, and the metabolic changes existing in obese patients with OSA. Copyright (C) 2009 S. Karger AG, Basel