933 resultados para Power distribution network
Resumo:
La calidad de energía eléctrica incluye la calidad del suministro y la calidad de la atención al cliente. La calidad del suministro a su vez se considera que la conforman dos partes, la forma de onda y la continuidad. En esta tesis se aborda la continuidad del suministro a través de la localización de faltas. Este problema se encuentra relativamente resuelto en los sistemas de transmisión, donde por las características homogéneas de la línea, la medición en ambos terminales y la disponibilidad de diversos equipos, se puede localizar el sitio de falta con una precisión relativamente alta. En sistemas de distribución, sin embargo, la localización de faltas es un problema complejo y aún no resuelto. La complejidad es debida principalmente a la presencia de conductores no homogéneos, cargas intermedias, derivaciones laterales y desbalances en el sistema y la carga. Además, normalmente, en estos sistemas sólo se cuenta con medidas en la subestación, y un modelo simplificado del circuito. Los principales esfuerzos en la localización han estado orientados al desarrollo de métodos que utilicen el fundamental de la tensión y de la corriente en la subestación, para estimar la reactancia hasta la falta. Como la obtención de la reactancia permite cuantificar la distancia al sitio de falta a partir del uso del modelo, el Método se considera Basado en el Modelo (MBM). Sin embargo, algunas de sus desventajas están asociadas a la necesidad de un buen modelo del sistema y a la posibilidad de localizar varios sitios donde puede haber ocurrido la falta, esto es, se puede presentar múltiple estimación del sitio de falta. Como aporte, en esta tesis se presenta un análisis y prueba comparativa entre varios de los MBM frecuentemente referenciados. Adicionalmente se complementa la solución con métodos que utilizan otro tipo de información, como la obtenida de las bases históricas de faltas con registros de tensión y corriente medidos en la subestación (no se limita solamente al fundamental). Como herramienta de extracción de información de estos registros, se utilizan y prueban dos técnicas de clasificación (LAMDA y SVM). Éstas relacionan las características obtenidas de la señal, con la zona bajo falta y se denominan en este documento como Métodos de Clasificación Basados en el Conocimiento (MCBC). La información que usan los MCBC se obtiene de los registros de tensión y de corriente medidos en la subestación de distribución, antes, durante y después de la falta. Los registros se procesan para obtener los siguientes descriptores: a) la magnitud de la variación de tensión ( dV ), b) la variación de la magnitud de corriente ( dI ), c) la variación de la potencia ( dS ), d) la reactancia de falta ( Xf ), e) la frecuencia del transitorio ( f ), y f) el valor propio máximo de la matriz de correlación de corrientes (Sv), cada uno de los cuales ha sido seleccionado por facilitar la localización de la falta. A partir de estos descriptores, se proponen diferentes conjuntos de entrenamiento y validación de los MCBC, y mediante una metodología que muestra la posibilidad de hallar relaciones entre estos conjuntos y las zonas en las cuales se presenta la falta, se seleccionan los de mejor comportamiento. Los resultados de aplicación, demuestran que con la combinación de los MCBC con los MBM, se puede reducir el problema de la múltiple estimación del sitio de falta. El MCBC determina la zona de falta, mientras que el MBM encuentra la distancia desde el punto de medida hasta la falta, la integración en un esquema híbrido toma las mejores características de cada método. En este documento, lo que se conoce como híbrido es la combinación de los MBM y los MCBC, de una forma complementaria. Finalmente y para comprobar los aportes de esta tesis, se propone y prueba un esquema de integración híbrida para localización de faltas en dos sistemas de distribución diferentes. Tanto los métodos que usan los parámetros del sistema y se fundamentan en la estimación de la impedancia (MBM), como aquellos que usan como información los descriptores y se fundamentan en técnicas de clasificación (MCBC), muestran su validez para resolver el problema de localización de faltas. Ambas metodologías propuestas tienen ventajas y desventajas, pero según la teoría de integración de métodos presentada, se alcanza una alta complementariedad, que permite la formulación de híbridos que mejoran los resultados, reduciendo o evitando el problema de la múltiple estimación de la falta.
Resumo:
The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.
Resumo:
Almost all the electricity currently produced in the UK is generated as part of a centralised power system designed around large fossil fuel or nuclear power stations. This power system is robust and reliable but the efficiency of power generation is low, resulting in large quantities of waste heat. The principal aim of this paper is to investigate an alternative concept: the energy production by small scale generators in close proximity to the energy users, integrated into microgrids. Microgrids—de-centralised electricity generation combined with on-site production of heat—bear the promise of substantial environmental benefits, brought about by a higher energy efficiency and by facilitating the integration of renewable sources such as photovoltaic arrays or wind turbines. By virtue of good match between generation and load, microgrids have a low impact on the electricity network, despite a potentially significant level of generation by intermittent energy sources. The paper discusses the technical and economic issues associated with this novel concept, giving an overview of the generator technologies, the current regulatory framework in the UK, and the barriers that have to be overcome if microgrids are to make a major contribution to the UK energy supply. The focus of this study is a microgrid of domestic users powered by small Combined Heat and Power generators and photovoltaics. Focusing on the energy balance between the generation and load, it is found that the optimum combination of the generators in the microgrid- consisting of around 1.4 kWp PV array per household and 45% household ownership of micro-CHP generators- will maintain energy balance on a yearly basis if supplemented by energy storage of 2.7 kWh per household. We find that there is no fundamental technological reason why microgrids cannot contribute an appreciable part of the UK energy demand. Indeed, an estimate of cost indicates that the microgrids considered in this study would supply electricity at a cost comparable with the present electricity supply if the current support mechanisms for photovoltaics were maintained. Combining photovoltaics and micro-CHP and a small battery requirement gives a microgrid that is independent of the national electricity network. In the short term, this has particular benefits for remote communities but more wide-ranging possibilities open up in the medium to long term. Microgrids could meet the need to replace current generation nuclear and coal fired power stations, greatly reducing the demand on the transmission and distribution network.
Resumo:
Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.
Resumo:
The Distribution Network Operators (DNOs) role is becoming more difficult as electric vehicles and electric heating penetrate the network, increasing the demand. As a result it becomes harder for the distribution networks infrastructure to remain within its operating constraints. Energy storage is a potential alternative to conventional network reinforcement such as upgrading cables and transformers. The research presented here in this paper shows that due to the volatile nature of the LV network, the control approach used for energy storage has a significant impact on performance. This paper presents and compares control methodologies for energy storage where the objective is to get the greatest possible peak demand reduction across the day from a pre-specified storage device. The results presented show the benefits and detriments of specific types of control on a storage device connected to a single phase of an LV network, using aggregated demand profiles based on real smart meter data from individual homes. The research demonstrates an important relationship between how predictable an aggregation is and the best control methodology required to achieve the objective.
Resumo:
Reinforcing the Low Voltage (LV) distribution network will become essential to ensure it remains within its operating constraints as demand on the network increases. The deployment of energy storage in the distribution network provides an alternative to conventional reinforcement. This paper presents a control methodology for energy storage to reduce peak demand in a distribution network based on day-ahead demand forecasts and historical demand data. The control methodology pre-processes the forecast data prior to a planning phase to build in resilience to the inevitable errors between the forecasted and actual demand. The algorithm uses no real time adjustment so has an economical advantage over traditional storage control algorithms. Results show that peak demand on a single phase of a feeder can be reduced even when there are differences between the forecasted and the actual demand. In particular, results are presented that demonstrate when the algorithm is applied to a large number of single phase demand aggregations that it is possible to identify which of these aggregations are the most suitable candidates for the control methodology.
Resumo:
Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability. Finally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested.
Resumo:
This paper assesses the impact of the location and configuration of Battery Energy Storage Systems (BESS) on Low-Voltage (LV) feeders. BESS are now being deployed on LV networks by Distribution Network Operators (DNOs) as an alternative to conventional reinforcement (e.g. upgrading cables and transformers) in response to increased electricity demand from new technologies such as electric vehicles. By storing energy during periods of low demand and then releasing that energy at times of high demand, the peak demand of a given LV substation on the grid can be reduced therefore mitigating or at least delaying the need for replacement and upgrade. However, existing research into this application of BESS tends to evaluate the aggregated impact of such systems at the substation level and does not systematically consider the impact of the location and configuration of BESS on the voltage profiles, losses and utilisation within a given feeder. In this paper, four configurations of BESS are considered: single-phase, unlinked three-phase, linked three-phase without storage for phase-balancing only, and linked three-phase with storage. These four configurations are then assessed based on models of two real LV networks. In each case, the impact of the BESS is systematically evaluated at every node in the LV network using Matlab linked with OpenDSS. The location and configuration of a BESS is shown to be critical when seeking the best overall network impact or when considering specific impacts on voltage, losses, or utilisation separately. Furthermore, the paper also demonstrates that phase-balancing without energy storage can provide much of the gains on unbalanced networks compared to systems with energy storage.
Resumo:
In this paper we propose a new lifetime distribution which can handle bathtub-shaped unimodal increasing and decreasing hazard rate functions The model has three parameters and generalizes the exponential power distribution proposed by Smith and Bain (1975) with the inclusion of an additional shape parameter The maximum likelihood estimation procedure is discussed A small-scale simulation study examines the performance of the likelihood ratio statistics under small and moderate sized samples Three real datasets Illustrate the methodology (C) 2010 Elsevier B V All rights reserved
Resumo:
This paper considers an extension to the skew-normal model through the inclusion of an additional parameter which can lead to both uni- and bi-modal distributions. The paper presents various basic properties of this family of distributions and provides a stochastic representation which is useful for obtaining theoretical properties and to simulate from the distribution. Moreover, the singularity of the Fisher information matrix is investigated and maximum likelihood estimation for a random sample with no covariates is considered. The main motivation is thus to avoid using mixtures in fitting bimodal data as these are well known to be complicated to deal with, particularly because of identifiability problems. Data-based illustrations show that such model can be useful. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Demands are one of the most uncertain parameters in a water distribution network model. A good calibration of the model demands leads to better solutions when using the model for any purpose. A demand pattern calibration methodology that uses a priori information has been developed for calibrating the behaviour of demand groups. Generally, the behaviours of demands in cities are mixed all over the network, contrary to smaller villages where demands are clearly sectorised in residential neighbourhoods, commercial zones and industrial sectors. Demand pattern calibration has a final use for leakage detection and isolation. Detecting a leakage in a pattern that covers nodes spread all over the network makes the isolation unfeasible. Besides, demands in the same zone may be more similar due to the common pressure of the area rather than for the type of contract. For this reason, the demand pattern calibration methodology is applied to a real network with synthetic non-geographic demands for calibrating geographic demand patterns. The results are compared with a previous work where the calibrated patterns were also non-geographic.
Resumo:
This paper is based on the development and experimental analysis of a DCM Boost interleaved converter suitable for application in traction systems of electrical vehicles pulled by electrical motors (Trolleybus), which are powered by urban DC or AC distribution networks. This front-end structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The architecture of proposed converter is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode. Furthermore, the converter can operate as AC-DC converter, or as DC-DC converter providing the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards. The digital controller has been implemented using a low cost FPGA and developed totally using a hardware description language VHDL and fixed point arithmetic. Thus, two control strategies are evaluated considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, the regular PWM modulation and a current correction PWM modulation. In order to verify the feasibility and performance of the proposed system, experimental results from a 15 kW low power scale prototype are presented, operating in DC and AC conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Analytical and Monte Carlo approaches to evaluate probability distributions of interruption duration
Resumo:
Regulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties-and, in some cases, rewards-that introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the maximum continuous interruption duration (MCID) per customer.This parameter is responsible for the majority of penalties in many electric distribution utilities. This paper describes analytical and Monte Carlo simulation approaches to evaluate probability distributions of interruption duration indices. More emphasis will be given to the development of an analytical method to assess the probability distribution associated with the parameter MCID and the correspond ng penalties. Case studies on a simple distribution network and on a real Brazilian distribution system are presented and discussed.