882 resultados para Polyethylene Glycol


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recently described complex nature of some dehydrin-coding sequences in Trifolium repens could explain the considerable variability among transcripts originating from a single gene.1 For some of the sequences the existence of natural antisense transcripts (NAT s), which could form sense-antisense (SAS) pairs, was predicted. The present study demonstrates that cis-natural antisense transcripts of 2 dehydrin types (YnKn and YnSKn) accumulate in white clover plants subjected to treatments with polyethylene glycol (PEG), abscisic acid (ABA), and high salt concentration. The isolated YnKn cis-NAT s mapped to sequence site enriched in alternative start codons. Some of the sense-antisense pairs exhibited inverse expression with differing profiles which depended on the applied stress. A natural antisense transcript coding for an ABC F family protein (a trans-NAT) which shares short sequence homology with YnSKn dehydrin was identified in plants subjected to salt stress. Forthcoming experiments will evaluate the impact of NAT s on transcript abundances, elucidating the role of transcriptional and post-transcriptional interferences in the regulation of dehydrin levels under various abiotic stresses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engineering nanoparticles (NPs) for immune modulation require a thorough understanding of their interaction(s) with cells. Gold NPs (AuNPs) were coated with polyethylene glycol (PEG), polyvinyl alcohol (PVA) or a mixture of both with either positive or negative surface charge to investigate uptake and cell response in monocyte-derived dendritic cells (MDDCs). Inductively coupled plasma optical emission spectrometry and transmission electron microscopy were used to confirm the presence of Au inside MDDCs. Cell viability, (pro-)inflammatory responses, MDDC phenotype, activation markers, antigen uptake and processing were analyzed. Cell death was only observed for PVA-NH2 AuNPs at the highest concentration. MDDCs internalize AuNPs, however, surface modification influenced uptake. Though limited uptake was observed for PEG-COOH AuNPs, a significant tumor necrosis factor-alpha release was induced. In contrast, (PEG+PVA)-NH2 and PVA-NH2 AuNPs were internalized to a higher extent and caused interleukin-1beta secretion. None of the AuNPs caused changes in MDDC phenotype, activation or immunological properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most promising applications for the restoration of small or moderately sized focal articular lesions is mosaicplasty (MP). Although recurrent hemarthrosis is a rare complication after MP, recently, various strategies have been designed to find an effective filling material to prevent postoperative bleeding from the donor site. The porous biodegradable polymer Polyactive (PA; a polyethylene glycol terephthalate - polybutylene terephthalate copolymer) represents a promising solution in this respect. A histological evaluation of the longterm PA-filled donor sites obtained from 10 experimental horses was performed. In this study, attention was primarily focused on the bone tissue developed in the plug. A computer-assisted image analysis and quantitative polarized light microscopic measurements of decalcified, longitudinally sectioned, dimethylmethylene blue (DMMB)- and picrosirius red (PS) stained sections revealed that the coverage area of the bone trabecules in the PA-filled donor tunnels was substantially (25%) enlarged compared to the neighboring cancellous bone. For this quantification, identical ROIs (regions of interest) were used and compared. The birefringence retardation values were also measured with a polarized light microscope using monochromatic light. Identical retardation values could be recorded from the bone trabeculae developed in the PA and in the neighboring bone, which indicates that the collagen orientation pattern does not differ significantly among these bone trabecules. Based on our new data, we speculate that PA promotes bone formation, and some of the currently identified degradation products of PA may enhance osteo-conduction and osteoinduction inside the donor canal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drought strongly influences root activities in crop plants and weeds. This paper is focused on the performance of the heavy metal accumulator Solanum nigrum, a plant which might be helpful for phytoremediation. The water potential in a split root system was decreased by the addition of polyethylene glycol (PEG 6000). Rubidium, strontium and radionuclides of heavy metals were used as markers to investigate the uptake into roots, the release to the shoot via the xylem, and finally the basipetal transport via the phloem to unlabeled roots. The uptake into the roots (total contents in the plant) was for most makers more severely decreased than the transport to the shoot or the export from the shoot to the unlabeled roots via the phloem. Regardless of the water potential in the labeling solution, 63Ni and 65Zn were selectively redistributed within the plant. From autoradiographs, it became evident that 65Zn accumulated in root tips, in the apical shoot meristem and in axillary buds, while 63Ni accumulated in young expanded leaves and roots but not in the meristems. Since both radionuclides are mobile in the phloem and are, therefore, well redistributed within the plant, the unequal transfer to shoot and root apical meristems is most likely caused by differences in the cell-to-cell transport in differentiation zones without functional phloem (immature sieve tubes).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Superparamagnetic iron oxide nanoparticles for biomedical applications are usually coated with organic molecules to form a steric barrier against agglomeration. The stability of these coatings is well established in the synthesis medium but is more difficult to assess in physiological environment. To obtain a first theoretical estimate of their stability in such an environment, we perform density functional theory calculations of the adsorption of water, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) coating molecules, as well as the monomer and dimer of glycine as a prototype short peptide, on the (110) surface of magnetite (Fe3O4) in vacuo. Our results show that PVA binds significantly stronger to the surface than both PEG and glycine, while the difference between the latter two is quite small. Depending on the coverage, the wateradsorption strength is intermediate between PVA and glycine. Due to its strongly interacting OH side groups, PVA is likely to remain bound to the surface in the presence of short peptides. This stability will have to be further assessed by molecular dynamics in the solvated state for which the present work forms the basis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microcell-mediated chromosome transfer is a method of gene transfer which allows for the introduction of single or small groups of intact chromosomes into recipient host cells. Microcell transfer was first performed by Fournier and Ruddle using rodent microcells and various recipient cells. Expansion of this technology to include the transfer of normal human genetic material has been hindered because large micronucleate populations from diploid human cells have been unobtainable. This dissertation research describes, however, the methods for production of micronuclei in 40-60% of normal human fibroblasts. Once micronucleate cells were obtained, they were enucleated by centrifugation in the presence of Cytochalasin B; the microcells were then purified and fused to recipient mouse (LMTK('-)) cells using a new fusion protocol employing polyethylene glycol containing phytohemagglutinin. Microcell clones were isolated from the HAT selection system. Alkaline Giemsa staining performed on these hybrids indicated the presence of a single human chromosome in each of seven microcell clones from three separate experiments. That chromosome was further identified by G banding analysis to be human chromosome #17, which codes for thymidine kinase. The time course for production of these hybrids from fusion to karyotypic analysis was 6 weeks. The viability of the transferred human genetic material was assessed by electrophoretic isozyme analysis.^ Subsequent experiments were performed in an attempt to optimize the transfer frequency for the thymidine kinase gene using this system. Results indicated that the frequency could be increased from < 1 x 10('-6) in initial experiments to 2 x 10('-5) in the latest experiment. Analyses were also conducted to determine the number of chromosomes per isolated microcell as well as to investigate the stability of the transferred human chromosome in the mouse genome. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phenomenon of premature chromosome condensation, resulting from fusion between mitotic and interphase cells, includes dissolution of the interphase nuclear framework, thus allowing a direct visualization of interphase chromosomes. Light microscope morphology of prematurely condensed chromosomes (PCC) from synchronized HeLa cells supports the model of an interphase "chromosome condensation cycle". PCC are increasingly attenuated as cells progress through G(,1). A maximum degree of decondensation is observed at active sites of DNA replication during S phase, and a condensed morphology is rapidly resumed following completion of replication of a chromosome segment.^ To permit ultrastructural and biochemical studies of PCC, a procedure was developed to induce premature chromosome condensation at high frequency. This was achieved by polyethylene glycol (PEG)-mediated fusion of a dense monolayer of mitotic and interphase cells induced by centrifugation onto lectin-coated culture dishes. Using this method, PCC induction frequencies of 60-90% are routinely obtained.^ Scanning electron microscope analysis of PCC spreads revealed that the extension of PCC during progression through G(,1) is accompanied by a transition of the basic 30 nm chromatin fiber from tightly packed looping fibers to extended longitudinal fibers. Sites of active DNA replication is S-PCC were indicated to be organized a single longitudinal fibers. Following replication of a chromosome segment, a rapid reorganization from the extended longitudinal fiber to packed looping fibers occurs. The postreplication maturation process appears to include the assembly of a chromosome core consisting of multiple longitudinal fibers.^ The role of histone H1 phosphorylation in PCC formation was investigated by acidurea polyacrylamide gel electrophoresis of total histone extracted from metaphase chromosomes and PCC following high frequency fusion. This investigation failed to demonstrate an extensive phosphorylation of H1 associated with PCC formation. However, significant dephosphorylation of superphosphorylated metaphase chromosome H1 was observed, indicating that interphase H1-phosphatase activity is dominant over metaphase H1 kinase activity. These observations provide evidence against models suggesting a role for H1 superphosphorylation in triggering mitotic condensation of chromosomes. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-pregnant, female adult rats pretreated with either phenobarbital (PB) or (beta)-naphthoflavone ((beta)NF) through short-course intraperitoneal injections were shown by sodium dithionite-reduced carbon monoxide difference spectroscopy and NADPH-cytochrome c in vitro assay to contain cytochrome P-450 and NADPH-dependent reductase associated with the microsomal fraction of colon mucosa. These two protein components of the mixed function oxidase system were released from the microsomal membrane, resolved from each other, and partially purified by using a combination of techniques including solubilization in nonionic detergent followed by ultracentrifugation, anion exchange and adsorption column chromatographies, native gel electrophoresis, polyethylene glycol fractionation and ultrafiltration.^ In vitro reconstitution assays demonstrated the cytochrome P-450 fraction as the site of substrate and molecular oxygen binding. By the use of immunochemical techniques including radial immunodiffusion, Ouchterlony double diffusion and protein electroblotting, the cytochrome P-450 fraction was shown to contain at least 5 forms of the protein, having molecular weights as determined by SDS gel electrophoresis identical to the corresponding hepatic cytochrome P-450. Estimation of total cytochrome P-450 content confirmed the preferential induction of particular forms in response to the appropriate drug pretreatment.^ The colonic NADPH-dependent reductase was isolated from native gel electrophoresis and second dimensional SDS gel electrophoresis was performed in parallel to that for purified reductase from liver. Comparative electrophoretic mobilities together with immunochemical analysis, as with the cytochrome P-450s, reconstitution assays, and kinetic characterization using artificial electron acceptors, gave conclusive proof of the structural and functional homology between the colon and liver sources of the enzyme.^ Drug metabolism was performed in the reconstituted mixed function oxidase system containing a particular purified liver cytochrome P-450 form or partially pure colon cytochrome P-450 fraction plus colon or liver reductase and synthetic lipid vesicles. The two drugs, benzo{(alpha)}pyrene and benzphetamine, which are most representative of the action of system in liver, lung and kidney, were tested to determine the specificity of the reconstituted system. The kinetics of benzo{(alpha)}pyrene hydroxylation were followed fluorimetrically for 3-hydroxybenzo{(alpha)}pyrene production. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La presente tesis doctoral se centra en el estudio de la respuesta molecular de las coníferas mediterráneas al estrés hídrico. Para ello se ha escogido como especie modelo Pinus pinaster Ait., la conífera más abundante en España, y que habita un amplio rango de situaciones ecológicas, especialmente en lo relativo a la disponibilidad de agua. En primer lugar, se ha aplicado un estrés hídrico controlado en cultivo hidropónico y se ha generando una genoteca sustractiva con objeto de identificar los genes inducidos por el estrés, analizando su expresión en raíces, tallos y acículas. A continuación, se ha analizado, la expresión de los genes anteriormente obtenidos así como de otros seleccionados de las bases de datos disponibles, durante una sequía prolongada en tierra, similar a las que las plantas deben afrontar en la naturaleza. Se ha utilizado en este caso, además de P. pinaster, P. pinea, otra conífera mediterránea adaptada a las sequías recurrentes. Este trabajo ha permitido identificar genes candidato expresionales, presumiblemente comunes en la respuesta molecular de las coníferas al déficit hídrico. Se han detectado diferencias notables en la expresión de determinados genes, que podrían ser los responsables de las diferencias exhibidas por ambas especies en el comportamiento frente a la sequía. Entre los genes identificados como inducidos por el estrés hídrico se encuentran varios miembros de la familia de las deshidrinas. Trabajos previos han utilizado deshidrinas como genes candidato; no obstante, la falta de especificidad de ciertos fragmentos y marcadores utilizados, debido a la complejidad estructural de esta familia, resta fiabilidad a algunos de los resultados publicados. Por este motivo, se ha estudiado en detalle esta familia en P. pinaster, se han identificado y caracterizado 8 miembros y se ha analizado su patrón de expresión frente a sequía. Este estudio ha permitido describir por primera vez unos segmentos conservados en la secuencia de aminoácidos de las deshidrinas de pináceas, cuya presencia y número de repeticiones parece estar relacionado con su especificidad. Por último, se han escogido tres genes implicados en distintas fases de la respuesta al estrés hídrico para su análisis exhaustivo: una deshidrina, una nodulina y un factor de transcripción tipo AP2. Se ha caracterizado su estructura exón/intrón y secuenciado su región promotora. Además, se han obtenido líneas transformadas que sobreexpresan estos genes tanto de forma heteróloga, en la especie modelo Arabidopsis thaliana, como en el propio P. pinaster. Este material facilitará la realización de futuros estudios sobre la función y el mecanismo de actuación de estos genes en la respuesta al estrés hídrico. ABSTRACT This thesis focuses in the study of the molecular response to water stress in Mediterranean conifers. For this purpose, P. pinaster was selected as model species. It’s the most abundant conifer in Spain, living in a wide range of ecological conditions, especially regarding water availability. First, we have applied a controlled polyethylene glycol-induced water stress in hydroponic culture and obtained a suppression subtractive hybridization (SSH) library, with the aim of identifying genes induced by water stress, analysing their expression in roots, stems and needles. We have then analysed the expression patterns of the identified genes, together with other genes selected from public databases. This study was conducted throughout a prolonged drought stress in soil, similar to the ones plants have to face in nature. In this case not only P. pinaster was analysed but also P. pinea, another Mediterranean conifer well adapted to recurrent droughts. This work has enabled us to identify of reliable candidate genes, presumably shared with other conifers in the response to water stress. We observed remarkable differences in the expression of some genes, which could be involved in the differential behaviour that these species show in the water stress response. Within the genes induced by water stress, several members of the dehydrin gene family were identified. Due to the structural complexity of the family, certain ambiguities and inconsistencies have been detected in previous works that have used dehydrins as candidate genes. For this reason, we have analysed thoroughly this gene family in P. pinaster, and have identified and characterized eight different members, whose expression patterns during drought have also been assessed. This study has allowed us to identify for the first time novel conserved segments in the amino acids sequences of Pinaceae. The presence and number of repetitions of these segments could be associated with the functional specificity of these proteins. Finally, three genes involved in different steps of the water stress response were selected for an exhaustive analysis: a dehydrin, a nodulin and an AP2 transcription factor. For all of them, the exon/intron structure was established and their promoter region was sequenced. Also, transformed lines were obtained both in Arabidopsis thaliana and in P. pinaster for the constitutive overexpression of these genes. This material will facilitate the development of further studies to investigate the function of these genes during the water stress response

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a number of clinical circumstances it would be desirable to artificially conceal cellular antigenic determinants to permit survival of heterologous donor cells. A case in point is the problem encountered in transfusions of patients with rare blood types or chronically transfused patients who become allosensitized to minor blood group determinants. We have tested the possibility that chemical modification of the red blood cell (RBC) membrane might serve to occlude antigenic determinants, thereby minimizing transfusion reactions. To this end, we have covalently bound methoxy(polyethylene glycol) (mPEG) to the surface of mammalian RBC via cyanuric chloride coupling. Human RBC treated with this technique lose ABO blood group reactivity as assessed by solution–phase antisera agglutination. In accord with this, we also find a profound decrease in anti-blood group antibody binding. Furthermore, whereas human monocytes avidly phagocytose untreated sheep RBC, mPEG-derivatized sheep RBC are ineffectively phagocytosed. Surprisingly, human and mouse RBC appear unaffected by this covalent modification of the cell membrane. Thus, mPEG-treated RBC are morphologically normal, have normal osmotic fragility, and mPEG-derivatized murine RBC have normal in vivo survival, even following repeated infusions. Finally, in preliminary experiments, mPEG-modified sheep RBC intraperitoneally transfused into mice show significantly improved (up to 360-fold) survival when compared with untreated sheep RBC. We speculate that similar chemical camouflage of intact cells may have significant clinical applications in both transfusion (e.g., allosensitization and autoimmune hemolytic disease) and transplantation (e.g., endothelial cells and pancreatic β cells) medicine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracellular fluid macroviscosity (EFM), modified by macromolecular cosolvents as occurs in body fluids, has been shown to affect cell membrane protein activities but not isolated proteins. In search for the mechanism of this phenomenon, we examined the effect of EFM on mechanical fluctuations of the cell membrane of human erythrocytes. The macroviscosity of the external medium was varied by adding to it various macromolecules [dextrans (70, 500, and 2,000 kDa), polyethylene glycol (20 kDa), and carboxymethyl-cellulose (100 kDa)], which differ in size, chemical nature, and in their capacity to increase fluid viscosity. The parameters of cell membrane fluctuations (maximal amplitude and half-width of amplitude distribution) were diminished with the elevation of solvent macroviscosity, regardless of the cosolvent used to increase EFM. Because thermally driven membrane fluctuations cannot be damped by elevation of EFM, the existence of a metabolic driving force is suggested. This is supported by the finding that in ATP-depleted red blood cells elevation of EMF did not affect cell membrane fluctuations. This study demonstrates that (i) EFM is a regulator of membrane dynamics, providing a possible mechanism by which EFM affects cell membrane activities; and (ii) cell membrane fluctuations are driven by a metabolic driving force in addition to the thermal one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of different total enzyme concentrations on the flux through the bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in vitro was determined by measuring PTS-mediated carbohydrate phosphorylation at different dilutions of cell-free extract of Escherichia coli. The dependence of the flux on the protein concentration was more than linear but less than quadratic. The combined flux–response coefficient of the four enzymes constituting the glucose PTS decreased slightly from values of ≈1.8 with increasing protein concentrations in the assay. Addition of the macromolecular crowding agents polyethylene glycol (PEG) 6000 and PEG 35000 led to a sharper decrease in the combined flux–response coefficient, in one case to values of ≈1. PEG 6000 stimulated the PTS flux at lower protein concentrations and inhibited the flux at higher protein concentrations, with the transition depending on the PEG 6000 concentration. This suggests that macromolecular crowding decreases the dissociation rate constants of enzyme complexes. High concentrations of the microsolute glycerol did not affect the combined flux–response coefficient. The data could be explained with a kinetic model of macromolecular crowding in a two-enzyme group-transfer pathway. Our results suggest that, because of the crowded environment in the cell, the different PTS enzymes form complexes that live long on the time-scale of their turnover. The implications for the metabolic behavior and control properties of the PTS, and for the effect of macromolecular crowding on nonequilibrium processes, are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

S-Adenosyl-l-methionine:l-methionine S-methyltransferase (MMT) catalyzes the synthesis of S-methyl-l-methionine (SMM) from l-methionine and S-adenosyl-l-methionine. SMM content increases during barley (Hordeum vulgare L.) germination. Elucidating the role of this compound is important from both a fundamental and a technological standpoint, because SMM is the precursor of dimethylsulfide, a biogenic source of atmospheric S and an undesired component in beer. We present a simple purification scheme for the MMT from barley consisting of 10% to 25% polyethylene glycol fractionation, anion-exchange chromatography on diethylaminoethyl-Sepharose, and affinity chromatography on adenosine-agarose. A final activity yield of 23% and a 2765-fold purification factor were obtained. After digestion of the protein with protease, the amino acid sequence of a major peptide was determined and used to produce a synthetic peptide. A polyclonal antibody was raised against this synthetic peptide conjugated to activated keyhole limpet hemocyanin. The antibody recognized the 115-kD denatured MMT protein and native MMT. During barley germination, both the specific activity and the amount of MMT protein increased. MMT-specific activity was found to be higher in the root and shoot than in the endosperm. MMT could be localized by an immunohistochemical approach in the shoot, scutellum, and aleurone cells but not in the root or endosperm (including aleurone).