932 resultados para Poly(vinyl chloride)
Resumo:
We report a general method for incorporation of nanoparticles into polyelectrolyte multilayer (PEM) thin films by utilizing the excess charges and associated counterions present in the PEMs. Silver ions were introduced directly into multilayers assembled from poly(diallyldimethylammonium chloride) (PDDA) and poly(styrene sulfonate) (PSS), (PDDA/PSS)(n), by a rapid ion exchange process, which were then converted into silver nanoparticles via in situ reduction to create composite thin films. The size and the content of the nanoparticles in the film call be tuned by adjusting the ionic strength in the polyelectrolyte solutions used for the assembly. Spatial control over the distribution of the nanoparticles in the PEM was achieved via the use of multilayer heterostructure containing PDDA/PSS bilayer blocks assembled at different salt concentrations. Because excess charges and counterions are always present in any PEM, this approach can be applied to fabricate a wide variety of composite thin Films based on electrostatic self-assembly.
Resumo:
A very simple and effective wet chemical route to direct synthesis of well-dispersed Pt nanoparticles with urchinlike morphology is proposed, which was carried out by simply mixing H2PtCl6 aqueous solution and poly(vinyl pyrrolidone) with the initial molar ratios of 1:3.5 kept constant at 30 degrees C for 3 days in the presence of formic acid. As-prepared urchinlike Pt nanostructures showed excellent electrocatalytic activity toward the reduction of dioxygen and oxidation of methanol and could be used as a promising nanoelectrocatalyst.
Resumo:
Cobalt ferrite one-dimensional nanostructures (nanoribbons and nanofibers) were prepared by electrospinning combined with sol-gel technology. The nanoribbons and nanofibers were formed through assembling magnetic nanoparticles with poly(vinyl pyrrolidone) (PVP) as the structure-directing template. Nanoribbons and nanofibers were obtained after calcining the precursor nanoribbons at different temperatures. Successive Ostwald ripening processes occur during the formation of CoFe2O4 nanoribbons and nanofibers. The sizes of nanoparticles varied with calcination temperatures, which leads to different one-dimensional structures and variable magnetic properties. These novel magnetic one-dimensional structures can potentially be used in nanoelectronic devices, magnetic sensors, and flexible magnets.
Resumo:
A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (NIPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium-tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet-visiblenear-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV-vis-NIR.
Resumo:
A more stably dispersing of multi-wall carbon nanotube composite (noted as PDDA-MWNT), which was obtained by wrapping the MWNT with poly (diallydimethylammonium) chloride (PDDA), was used for the immobilization of glucose oxidase (GOD) and its bioelectrochemical studies. The morphologies and structures of the PDDA-MWNT composite were characterized by environment-canning electron microscopy (ESEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were used to feature the GOD adsorbed onto the electrode modified by PDDA-MWNT composite. The immobilized GOD at the PDDA-MWNT films exhibited a pair of well-defined nearly reversible redox peaks and a fast heterogeneous electron transfer rate with the rate constant (k(s)) of 2.76 s(-1). In addition, GOD immobilized in this way retained its bioelectrocatalytic activity for the oxidation of glucose. The method of immobilizing GOD without any additional cross-linking agents presented here is easy and facile, which provides a model for other redox enzymes and proteins.
Resumo:
The characteristics of intermediates of bacteriorhodopsin (bR) can be verified by chemical modification of its surroundings. CeO2 nanoparticles, which were obtained using water-in-oil (W/O) microemulsion and calcined at various temperatures, were used as chemical additive for the modification of bR. X-ray diffraction (XRD) shows that the mean particle sizes for the samples calcined at 500 and 800 degrees C are approximately 10 and 30 nm, respectively. We prepared CeO2 nanoparticle modified poly(vinyl alcohol) (bR-PVA) films with an optical density of about 1.5 at the ground state. It is observed that the lifetime of the Wintermediate for the modified films is prolonged compared with that of the unmodified ones, and the lifetime increases with decreasing particle size. A probable mechanism, which is likely to involve effective molecular interactions between the CeO2 nanoparticles and the bR molecules, is discussed. The hydroxyl groups, which might arise from the interaction between the nanoparticles and the surrounding water molecules, help to lower the ability of the Schiff base of uptaking protons in the Wintermediate. The results indicate that controlling the interactions between biomolecules and various nanomaterials would enlarge the functionality and the range of the application of nanoparticles.
Resumo:
Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing poly(vinyl pyrrolidone) (PVP), Ce(NO3)(3)(.)6H(2)O and ZrOCl2-8H(2)O. Upon firing the composite fibers at 1000 degrees C, Ce(0.67)Zr(0.33)O(2)fibers with diameters ranging from 0.4 to 2 mu m were synthesized. These fibers exhibit strong resistance to sintering. They still have specific surface area around 11.8 m(2)/g after being heated at 1000 degrees C for 6 h.
Resumo:
A novel path of preparing PP/o-MMT nanocomposites, which pay attention to the breaking up of MMT original agglomerates and dispersing of its primary particles, rather than the intercalation or exfoliation degree of o-MMT, was reported. The method of predispersing the o-MMT particles into a polar poly(vinyl alcohol) (PVA) matrix and then melt blending the pre-treated PVA/o-MMT hybrids with PP was studied. 3-isopropenyl-alpha,alpha-dimethylbenzene-isocyanate (TMI) was used as a modifier of PVA to improve the compatibility between PVA and PP matrix. Pre-disperse o-MMT with TMI modified PVA was proved to be an effective way to get a composite with fine o-MMT particles dispersion. But the method, which is pre-dispersing o-MMT with non modified PVA and then using TMI to modify such PVA/o-MMT hybrid, would largely reduce the reaction degree between TMI and PVA because of the relatively lower reaction temperature. Although the latter method also can obtain finer dispersion composites than that with using PP-g-MAH as compatibilizer, the relatively higher degradation degree of PP matrix in this method will limit the use of this nanocomposite.
Resumo:
The authors report the formation of highly oriented wrinkling on the surface of the bilayer [polystyrene (PS)/poly(vinyl pyrrolidone) (PVP)] confined by a polydimethylsiloxane (PDMS) mold in a water vapor environment. When PVP is subjected to water vapor, the polymer loses its mechanical rigidity and changes to a viscous state, which leads to a dramatic change in Young's modulus. This change generates the amount of strain in the bilayer to induce the wrinkling. With a shape-controlled mold, they can get the ordered wrinkles perfectly perpendicular or leaned 45 S to the channel orientation of the mold because the orientation of the resultant force changes with the process of water diffusion which drives the surface to form the wrinkling. Additionally, they can get much smaller wrinkles than the stripe spacing of PDMS mold about one order. The wrinkle period changes with the power index of about 0.5 for various values of the multiplication product of the film thicknesses of the two layers, namely, lambda similar to (h(PS)h(PVP))(1/2).
Resumo:
The poly(vinyl alcohol)/ poly(N-vinyl pyrrolidone) (PVA-PVP) hydrogels containing silver nanoparticles were prepared by repeated freezing-thawing treatment. The silver content in the solid composition was in the range of 0.1-1.0 wt %, the silver particle size was from 20 to 100 nm, and the weight ratio of PVA to PVP was 70 : 30. The influence of silver nanoparticles on the properties of PVA-PVP matrix was investigated by differential scanning calorimeter, infrared spectroscopy and UV-vis spectroscopy, using PVA-PVP films containing silver particles as a model. The morphology of freeze-dried PVA-PVP hydrogel matrix and dispersion of the silver nanoparticles in the matrix was examined by scanning electron microscopy. It was found that a three-dimensional structure was formed during the process of freezing-thawing treatment and no serious aggregation of the silver nanoparticles occurred. Water absorption properties, release of silver ions from the hydrogels and the antibacterial effects of the hydrogels against Escherichia coli and Staphylococcus aureus were examined too. It was proved that the nanosilver-containing hydrogels had an excellent antibacterial ability.
Resumo:
A series of orange-red to red phosphorescent heteroleptic Cu-I complexes (the first ligand: 2,2 '-biquinoline (bq), 4,4 '-diphenyl2,2 '-biquinoline (dpbq) or 3,3 '-methylen-4,4 '-diphenyl-2,2 '-biquinoline (mdpbq); the second ligand: triphenylphosphine or bis[2-(diphenylphosphino)phenyl]ether (DPEphos)) have been synthesized and fully characterized. With highly rigid bulky biquinoline-type ligands, complexes [Cu(mdpbq)(PPh3)(2)](BF4) and [Cu(mdpbq)(DPEphos)](BF4) emit efficiently in 20 wt % PMMA films with photoluminescence quantum yield of 0.56 and 0.43 and emission maximum of 606 nm and 617 nm, respectively. By doping these complexes in poly(vinyl carbazole) (PVK) or N-(4-(carbazol-9-yl)phenyl)-3,6-bis(carbazol-9-yl) carbazole (TCCz), phosphorescent organic light-emitting diodes (OLEDs) were fabricated with various device structures. The complex [Cu(mdpbq)(DPEphos)](BF4) exhibits the best device performance. With the device structure of ITO/PEDOT/ TCCz:[Cu(mdpbq)(DPEphos)](BF4) (15 wt %)/TPBI/LiF/Al (III), a current efficiency up to 6.4 cd A(-1) with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.61, 0.39) has been realized. To our best knowledge, this is the first report of efficient mononuclear Cu complexes with red emission.
Resumo:
The phase behavior of a miscible PS/PVME (80/20, w/w) blend film in a confined geometry has been investigated at the annealing temperature much lower than the low critical solution temperature (LCST) of the blend. When the annealing temperature (52degreesC) is near the glass transition temperature of the blend (51.2degreesC), PVME-rich phase at the air-film surface under a microchannel forms smaller protrusion. When the annealing temperature is increased to 70degreesC, the protruding stripes, which are almost developed, are mainly composed of the mobile PVME-rich phase. These results reveal that the capillary force lead to the enrichment of PVME-rich phase at the air-polymer interface of a PDMS microchannel, that is, the capillary force lithography (CFL) can induce the phase separation of PS/PVME blend films.
Resumo:
Through layer-by-layer (LBL) assembly technique, iron oxide (Fe3O4) nanoparticles coated by poly (diallyldimethylammonium chloride) (PDDA) and Preyssler-type polyoxometalates (NH4)(14)NaP5W30O110.31H(2)O (P5W30) were alternately deposited on quartz and ITO substrates, and 4-aminobenzoic acid modified glassy carbon electrodes. Thus-prepared multilayer films were characterized by UV-visible spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. It was proved that the multilayer films are uniform and stable. And the electrocatalytic activities of the multilayer films can be fine-tuned by adjusting the assembly conditions in the LBL assembly process, such as the pH of the assembly solution. The multilayer films fabricated from P5W30 solutions dissolved in 0.1 M H2SO4 exhibit high electrocatalytic response and sensitivity toward the reduction of two substrates of important analytical interests, HNO2 and IO3- whereas the films assembled with P5W30 solutions dissolved in 1.0 M H2SO4 show remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). Furthermore, the electrocatalytic properties of the HER of the latter film can be obtained from the former film upon exposure to 1.0 M H2SO4 for several hours.
Resumo:
Two kinds of polymeric pH indicators PPF (phenolphthalein-formaldehyde product) and CPF (o-cresolphthalein-formaldehyde product) immobilized cross-linked poly(vinyl alcohol) membranes (PPF-PVA and CPF-PVA) for optical intermittent determination of high basicity ([OH-] = 1-8 M) based on a kinetic process were developed. In our previous work, we had demonstrated that PPF-PVA and CPF-PVA could perform the determination of high pH values from pH 10.0 to 14.0. Here the discoloring kinetic behaviors of PPF-PVA and CPF-PVA were compared with those of free phenolphthalein, o-cresolphthalein and thymolphthalein. Experimental results and theoretical analysis indicated that the response behaviors of the optodes' membranes in concentrated NaOH solutions were diffusion-independent and still complied with the pseudo-first-order kinetics. In addition, two data analysis methods for determination were presented. One was directly based on the reduced absorbance: the other was based on the discoloring kinetic constant. It was found that the latter could perform a rapid (60 s) and reliable (relative standard deviation: 2.6%) determination for high basicity.
Resumo:
Efficient blue polymer light-emitting diodes (PLEDs) have been fabricated with a neutral alcohol-soluble polyfluorene, i.e., poly(9,9-bis(6(')-diethoxylphosphorylhexyl)fluorene) (PF-EP), as the emitting layer, high work-function Al as the cathode, and poly(vinyl carbazole) as the hole-transporting layer. The PLEDs display a maximum luminous efficiency of 4.0 cd/A and the luminous efficiency > 2.4 cd/A in a wide range of current densities. It is found that the promising performance of the devices is attributed to the fact that the PF-EP is not only an efficient blue light-emitting polymer, but it also can facilitate efficient electron injection at the Al/PF-EP interface.