884 resultados para Piecewise linear systems
Resumo:
This thesis is concerned with uniformly convergent finite element and finite difference methods for numerically solving singularly perturbed two-point boundary value problems. We examine the following four problems: (i) high order problem of reaction-diffusion type; (ii) high order problem of convection-diffusion type; (iii) second order interior turning point problem; (iv) semilinear reaction-diffusion problem. Firstly, we consider high order problems of reaction-diffusion type and convection-diffusion type. Under suitable hypotheses, the coercivity of the associated bilinear forms is proved and representation results for the solutions of such problems are given. It is shown that, on an equidistant mesh, polynomial schemes cannot achieve a high order of convergence which is uniform in the perturbation parameter. Piecewise polynomial Galerkin finite element methods are then constructed on a Shishkin mesh. High order convergence results, which are uniform in the perturbation parameter, are obtained in various norms. Secondly, we investigate linear second order problems with interior turning points. Piecewise linear Galerkin finite element methods are generated on various piecewise equidistant meshes designed for such problems. These methods are shown to be convergent, uniformly in the singular perturbation parameter, in a weighted energy norm and the usual L2 norm. Finally, we deal with a semilinear reaction-diffusion problem. Asymptotic properties of solutions to this problem are discussed and analysed. Two simple finite difference schemes on Shishkin meshes are applied to the problem. They are proved to be uniformly convergent of second order and fourth order respectively. Existence and uniqueness of a solution to both schemes are investigated. Numerical results for the above methods are presented.
Resumo:
This thesis is concerned with uniformly convergent finite element methods for numerically solving singularly perturbed parabolic partial differential equations in one space variable. First, we use Petrov-Galerkin finite element methods to generate three schemes for such problems, each of these schemes uses exponentially fitted elements in space. Two of them are lumped and the other is non-lumped. On meshes which are either arbitrary or slightly restricted, we derive global energy norm and L2 norm error bounds, uniformly in the diffusion parameter. Under some reasonable global assumptions together with realistic local assumptions on the solution and its derivatives, we prove that these exponentially fitted schemes are locally uniformly convergent, with order one, in a discrete L∞norm both outside and inside the boundary layer. We next analyse a streamline diffusion scheme on a Shishkin mesh for a model singularly perturbed parabolic partial differential equation. The method with piecewise linear space-time elements is shown, under reasonable assumptions on the solution, to be convergent, independently of the diffusion parameter, with a pointwise accuracy of almost order 5/4 outside layers and almost order 3/4 inside the boundary layer. Numerical results for the above schemes are presented. Finally, we examine a cell vertex finite volume method which is applied to a model time-dependent convection-diffusion problem. Local errors away from all layers are obtained in the l2 seminorm by using techniques from finite element analysis.
Resumo:
It is known that the exact density functional must give ground-state energies that are piecewise linear as a function of electron number. In this work we prove that this is also true for the lowest-energy excited states of different spin or spatial symmetry. This has three important consequences for chemical applications: the ground state of a molecule must correspond to the state with the maximum highest-occupied-molecular-orbital energy, minimum lowest-unoccupied-molecular-orbital energy, and maximum chemical hardness. The beryllium, carbon, and vanadium atoms, as well as the CH(2) and C(3)H(3) molecules are considered as illustrative examples. Our result also directly and rigorously connects the ionization potential and electron affinity to the stability of spin states.
Resumo:
The parallelization of existing/industrial electromagnetic software using the bulk synchronous parallel (BSP) computation model is presented. The software employs the finite element method with a preconditioned conjugate gradient-type solution for the resulting linear systems of equations. A geometric mesh-partitioning approach is applied within the BSP framework for the assembly and solution phases of the finite element computation. This is combined with a nongeometric, data-driven parallel quadrature procedure for the evaluation of right-hand-side terms in applications involving coil fields. A similar parallel decomposition is applied to the parallel calculation of electron beam trajectories required for the design of tube devices. The BSP parallelization approach adopted is fully portable, conceptually simple, and cost-effective, and it can be applied to a wide range of finite element applications not necessarily related to electromagnetics.
Resumo:
This paper discusses preconditioned Krylov subspace methods for solving large scale linear systems that originate from oil reservoir numerical simulations. Two types of preconditioners, one being based on an incomplete LU decomposition and the other being based on iterative algorithms, are used together in a combination strategy in order to achieve an adaptive and efficient preconditioner. Numerical tests show that different Krylov subspace methods combining with appropriate preconditioners are able to achieve optimal performance.
Resumo:
Diatoms exist in almost every aquatic regime; they are responsible for 20% of global carbon fixation and 25% of global primary production, and are regarded as a key food for copepods, which are subsequently consumed by larger predators such as fish and marine mammals. A decreasing abundance and a vulnerability to climatic change in the North Atlantic Ocean have been reported in the literature. In the present work, a data matrix composed of concurrent satellite remote sensing and Continuous Plankton Recorder (CPR) in situ measurements was collated for the same spatial and temporal coverage in the Northeast Atlantic. Artificial neural networks (ANNs) were applied to recognize and learn the complex non-monotonic and non-linear relationships between diatom abundance and spatiotemporal environmental factors. Because of their ability to mimic non-linear systems, ANNs proved far more effective in modelling the diatom distribution in the marine ecosystem. The results of this study reveal that diatoms have a regular seasonal cycle, with their abundance most strongly influenced by sea surface temperature (SST) and light intensity. The models indicate that extreme positive SSTs decrease diatom abundances regardless of other climatic conditions. These results provide information on the ecology of diatoms that may advance our understanding of the potential response of diatoms to climatic change.
Resumo:
Raised bog peat deposits form important archives for reconstructing past changes in climate. Precise and reliable age models are of vital importance for interpreting such archives. We propose enhanced, Markov chain Monte Carlo based methods for obtaining age models from radiocarbon-dated peat cores, based on the assumption of piecewise linear accumulation. Included are automatic choice of sections, a measure of the goodness of fit and outlier downweighting. The approach is illustrated by using a peat core from the Netherlands.
Resumo:
In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying Itoˆ stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Resumo:
As the complexity of computing systems grows, reliability and energy are two crucial challenges asking for holistic solutions. In this paper, we investigate the interplay among concurrency, power dissipation, energy consumption and voltage-frequency scaling for a key numerical kernel for the solution of sparse linear systems. Concretely, we leverage a task-parallel implementation of the Conjugate Gradient method, equipped with an state-of-the-art pre-conditioner embedded in the ILUPACK software, and target a low-power multi core processor from ARM.In addition, we perform a theoretical analysis on the impact of a technique like Near Threshold Voltage Computing (NTVC) from the points of view of increased hardware concurrency and error rate.
Resumo:
Thin-shell instability is one process which can generate entangled structures in astrophysical plasma on collisional (fluid) scales. It is driven by a spatially varying imbalance between the ram pressure of the inflowing upstream plasma and the downstream's thermal pressure at a nonplanar shock. Here we show by means of a particle-in-cell simulation that an analog process can destabilize a thin shell formed by two interpenetrating, unmagnetized, and collisionless plasma clouds. The amplitude of the shell's spatial modulation grows and saturates after about ten inverse proton plasma frequencies, when the shell consists of connected piecewise linear patches.
Resumo:
A presente tese é dedicada ao estudo da estabilidade de sistemas definidos por famílias finitas de sistemas lineares invariantes e por regras de comutação que coordenam a comutação entre eles. Assumimos que, em cada instante de tempo onde ocorre comutação, a trajectória do estado do sistema possa sofrer um "salto" desencadeado pela aplicação de um reset. Estes sistemas são, neste trabalho, designados por sistemas comutados com reset. Os resets podem ser de dois tipos - totais ou parciais, dependendo se a totalidade ou apenas uma parte das componentes do estado está disponível para reset. Neste sentido, distinguimos sistemas comutados com reset (total) e sistemas comutados com reset parcial. Analisamos a estabilidade dos dois tipos de sistemas comutados referidos à luz da teoria de Lyapunov e sob duas perspectivas; por um lado determinamos sob que condições um sistema comutado com reset é estável e por outro, identificamos resets que, quando aplicados, asseguram a estabilidade do sistema. Neste último ponto, a escolha dos resets adequados a aplicar pode por si só revelar-se insuficiente para obter estabilidade, especialmente se apenas parte das componentes do estado estiver disponível para reset (caso de reset parcial).
Resumo:
A análise dos efeitos dos sismos mostra que a investigação em engenharia sísmica deve dar especial atenção à avaliação da vulnerabilidade das construções existentes, frequentemente desprovidas de adequada resistência sísmica tal como acontece em edifícios de betão armado (BA) de muitas cidades em países do sul da Europa, entre os quais Portugal. Sendo os pilares elementos estruturais fundamentais na resistência sísmica dos edifícios, deve ser dada especial atenção à sua resposta sob ações cíclicas. Acresce que o sismo é um tipo de ação cujos efeitos nos edifícios exige a consideração de duas componentes horizontais, o que tem exigências mais severas nos pilares comparativamente à ação unidirecional. Assim, esta tese centra-se na avaliação da resposta estrutural de pilares de betão armado sujeitos a ações cíclicas horizontais biaxiais, em três linhas principais. Em primeiro lugar desenvolveu-se uma campanha de ensaios para o estudo do comportamento cíclico uniaxial e biaxial de pilares de betão armado com esforço axial constante. Para tal foram construídas quatro séries de pilares retangulares de betão armado (24 no total) com diferentes características geométricas e quantidades de armadura longitudinal, tendo os pilares sido ensaiados para diferentes histórias de carga. Os resultados experimentais obtidos são analisados e discutidos dando particular atenção à evolução do dano, à degradação de rigidez e resistência com o aumento das exigências de deformação, à energia dissipada, ao amortecimento viscoso equivalente; por fim é proposto um índice de dano para pilares solicitados biaxialmente. De seguida foram aplicadas diferentes estratégias de modelação não-linear para a representação do comportamento biaxial dos pilares ensaiados, considerando não-linearidade distribuída ao longo dos elementos ou concentrada nas extremidades dos mesmos. Os resultados obtidos com as várias estratégias de modelação demonstraram representar adequadamente a resposta em termos das curvas envolventes força-deslocamento, mas foram encontradas algumas dificuldades na representação da degradação de resistência e na evolução da energia dissipada. Por fim, é proposto um modelo global para a representação do comportamento não-linear em flexão de elementos de betão armado sujeitos a ações biaxiais cíclicas. Este modelo tem por base um modelo uniaxial conhecido, combinado com uma função de interação desenvolvida com base no modelo de Bouc- Wen. Esta função de interação foi calibrada com recurso a técnicas de otimização e usando resultados de uma série de análises numéricas com um modelo refinado. É ainda demonstrada a capacidade do modelo simplificado em reproduzir os resultados experimentais de ensaios biaxiais de pilares.
Resumo:
In this paper the parallelization of a new learning algorithm for multilayer perceptrons, specifically targeted for nonlinear function approximation purposes, is discussed. Each major step of the algorithm is parallelized, a special emphasis being put in the most computationally intensive task, a least-squares solution of linear systems of equations.
Resumo:
This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.
Resumo:
This paper studies several topics related with the concept of “fractional” that are not directly related with Fractional Calculus, but can help the reader in pursuit new research directions. We introduce the concept of non-integer positional number systems, fractional sums, fractional powers of a square matrix, tolerant computing and FracSets, negative probabilities, fractional delay discrete-time linear systems, and fractional Fourier transform.