939 resultados para Physiological and pathological changes
Resumo:
The vascular adventitia is recognized as a dynamic mediator of vascular structure and function, yet its role in aging is not understood. The purpose of this thesis was to examine the age-related changes of the vascular adventitia and determine the underlying mediators responsible. Male Sprague-Dawley rats were aged to 15, 30, 50 and 80 weeks before being anesthetised and euthanized by exsanguination. Thoracic aortas, mesenteric and pudental arteries were isolated, formalin fixed, and embedded in paraffin then sectioned at 5μm. Vessels were examined by microscopy and protein expression was determined by indirect immunofluorescence. The thickness of the adventitia increased dramatically with age. Immunofluorescence revealed a robust expression of endothelin system proteins in the adventitia. Additionally, extracellular matrix proteins collagen and fibronectin, and the proliferation marker Ki67 showed strong adventitial origin. The changes observed in the vascular adventitia with aging clearly demonstrate an important role in the process of vascular aging.
Resumo:
The vascular adventitia is recognized as a dynamic mediator of vascular structure and function, yet its role in aging is not understood. The purpose of this thesis was to examine the age-related changes of the vascular adventitia and determine the underlying mediators responsible. Male Sprague-Dawley rats were aged to 15,30,50 and 80 weeks before being anesthetised and euthanized by exsanguination. Thoracic aortas, mesenteric and pudental arteries were isolated, formalin fixed, and embedded in paraffin then sectioned at 51lm. Vessels were examined by microscopy and protein expression was determined by indirect immunofluorescence. The thickness of the adventitia increased dramatically with age. Immunofluorescence revealed a robust expression of endothelin system proteins in the adventitia. Additionally, extracellular matrix proteins collagen and fibronectin, and the proliferation marker Ki67 showed strong adventitial origin. The changes observed in the vascular adventitia with aging clearly demonstrate an important role in the process of vascular aging.
Resumo:
The vitamin A metabolite, retinoic acid (RA) is known to play an important role in the development, patterning and regeneration of nervous tissue, both in the embryo and in the adult. Classically, RA is known to mediate the transcription of target genes through the binding and activation ofits nuclear receptors: the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Recently, mounting evidence from many animal models has implicated a number of RA-mediated effects operating independently of gene transcription, and thus highlights nove~ nongenornic actions of RA. For example, recent work utilizing cultured neurons from the pond snaa Lymnaea stagnalis, has shown that RA can elicit a regenerative response, growth cone turning, independently of "classical" transcriptional activation While this work illustrates a novel regeneration-inducing effect in culture, it is currently -unknown whether RA also induces regeneration in situ. This study has sought to determine RA's regenerative effucts at the morphological and molecular levels by utilizing an in situ approach focusing on a single identified dopaminergic neuron which possesses a known "mapped" morphology within the CNS. These studies show, for the first time in an invertebrate, that RA can increase neurite outgrowth of dopaminergic cells that have undergone a nerve-crush injury. Utilizing Western blot analysis, it was shown that this effect appears to be independent of any changes in whole CNS expression levels of either the RAR or RXR. Additionally, utilizing immunohistochemistry, to examine protein localization, there does not appear to be any obvious changes in the RXR expression level at the crush site. Changes in cell morphology such as neurity extension are known to be modulated by changes in neuronal firing activity. It has been previously shown that exposure to RA over many days can lead to changes in the electrophysiological properties of cultured Lymnaea neurons; however, no studies have investigated whether short-term exposure to RA can elicit electrophysiological changes and/or changes in firing pattern of neurons in Lymnaea or any other species. The studies performed here show, for the first time in any species, that short-tenn treatment with RA can elicit significant changes in the firing properties of both identified dopaminergic neurons and peptidergic neurons. This effect appears to be independent of protein synthesis, activation of protein kinase A or phospholipase C, and calcium influx but is both dose-dependent and isomer-dependent. These studies provide evidence that the RXR, but not RAR, may be involved, and that intracellular calcium concentrations decrease upon RAexposure with a time course, dose-dependency and isomer-dependency that coincide with the RA-induced electrophysiological changes. Taken together, these studies provide important evidence highlighting RA as a multifunctional molecule, inducing morphological, molecular and electrophysiological changes within the CNS, and highlight the many pathways through which RA may operate to elicit its effects.
Resumo:
Diatoms are renowned for their robust ability to perform NPQ (Non-Photochemical Quenching of chlorophyll fluorescence) as a dissipative response to heightened light stress on photosystem II, plausibly explaining their dominance over other algal groups in turbulent light environs. Their NPQ mechanism has been principally attributed to a xanthophyll cycle involving the lumenal pH regulated reversible de-epoxidation of diadinoxanthin. The principal goal of this dissertation is to reveal the physiological and physical origins and consequences of the NPQ response in diatoms during short-term transitions to excessive irradiation. The investigation involves diatom species from different originating light environs to highlight the diversity of diatom NPQ and to facilitate the detection of core mechanisms common among the diatoms as a group. A chiefly spectroscopic approach was used to investigate NPQ in diatom cells. Prime methodologies include: the real time monitoring of PSII excitation and de-excitation pathways via PAM fluorometry and pigment interconversion via transient absorbance measurements, the collection of cryogenic absorbance spectra to measure pigment energy levels, and the collection of cryogenic fluorescence spectra and room temperature picosecond time resolved fluorescence decay spectra to study excitation energy transfer and dissipation. Chemical inhibitors that target the trans-thylakoid pH gradient, the enzyme responsible for diadinoxanthin de-epoxidation, and photosynthetic electron flow were additionally used to experimentally manipulate the NPQ response. Multifaceted analyses of the NPQ responses from two previously un-photosynthetically characterised species, Nitzschia curvilineata and Navicula sp., were used to identify an excitation pressure relief ‘strategy’ for each species. Three key areas of NPQ were examined: (i) the NPQ activation/deactivation processes, (ii) how NPQ affects the collection, dissipation, and usage of absorbed light energy, and (iii) the interdependence of NPQ and photosynthetic electron flow. It was found that Nitzschia cells regulate excitation pressure via performing a high amplitude, reversible antenna based quenching which is dependent on the de-epoxidation of diadinoxanthin. In Navicula cells excitation pressure could be effectively regulated solely within the PSII reaction centre, whilst antenna based, diadinoxanthin de-epoxidation dependent quenching was implicated to be used as a supplemental, long-lasting source of excitation energy dissipation. These strategies for excitation balance were discussed in the context of resource partitioning under these species’ originating light climates. A more detailed investigation of the NPQ response in Nitzschia was used to develop a comprehensive model describing the mechanism for antenna centred non-photochemical quenching in this species. The experimental evidence was strongly supportive of a mechanism whereby: an acidic lumen triggers the diadinoxanthin de-epoxidation and protonation mediated aggregation of light harvesting complexes leading to the formation of quencher chlorophyll a-chlorophyll a dimers with short-lived excited states; quenching relaxes when a rise in lumen pH triggers the dispersal of light harvesting complex aggregates via deprotonation events and the input of diadinoxanthin. This model may also be applicable for describing antenna based NPQ in other diatom species.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
The present study was undertaken to elucidate the nutritional and pathological changes associated with aflatoxin B1 toxicity in Penaeus monodon and to determine the efficacy of vitamins E and K, and Amrita Bindu, herbal mixture in ameliorating the toxicity of AFB1. The main objectives the study is to document the pathological and immunological changes in P.monodon fed with AFB1 incorporated diets and to delineate the histological and ultrastructural changes and determine the presence of AFB1 residue in the shrimp body, to evaluate the growth performance of feed efficiency in P. monodon post larvae fed AFB1 added diets, to assess the interactive effect of heavy metals like copper and cadmium at sub-lethal levels in P. monodon postlarve fed AFB1 added diets, to decipher the ameliorative action of Vitamins E & K and a spicy herbal mixture, Amrita Bindu on AFB1 in P.monodon sub-adults. The study has revealed that Aflatoxin B1 significantly affects protein, lipid and carbohydrate metabolism in the shrimp penaeus monodon. The remarkable effect was observed in the immune system, as AFB1 has elevatod the immune response during initial days of exposure and prolonged exposure to the toxin leads to weakening of the animal’s immunity. Aflatoxin B1 level above 50 ppb severely affected the growth and feed utilization which in turn reflects the damage caused to the hepatopancreas as evident from the histological and ultrastructural observations.
Resumo:
Division of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology
Resumo:
S. album L. is the source of highly priced and fragrant heartwood which on steam distillation yields on an average 57 per cent oil of high perfumery value. Global demand for sandalwood is about 5000-6000 tons/year and that of oil is 100 tons/year. Heartwood of sandal is estimated to fetch up to Rs. 3.7 million/ton and wood oil Rs.70,000-100,000/ kg in the international market. Sandal heartwood prices have increased from Rs. 365/ton in 1900 to Rs. 6.5 lakhs/ton in 1999-2000 and to Rs. 37 lakhs/ton in 2007. Substantial decline in sandalwood production has occurred from 3176 tons/year during 1960-‘ 65 to 1500 tons/year in 1997-98, and to 500 tons/year in 2007.Depletion of sandal resources is attributed to several factors, both natural and anthropogenic. Low seed setting, poor seed germination, seedling mortality, lack of haustorial connection with host plant roots, recurrent annual fires in natural sandal forests, lopping of trees for fodder, excessive grazing, hacking, encroachments, seedling diseases and spread of sandal spike disease are the major problems facing sandal. While these factors hinder sandal regeneration in forest areas, the situation is accelerated by human activities of chronic overexploitation and illicit felling.Deterioration of natural sandal populations due to illicit felling, encroachments and diseases has an adverse effect on genetic diversity of the species. The loss of genetic diversity has aggravated during recent years due to extensive logging, changing landuse patterns and poor natural regeneration. The consequent genetic erosion is of serious concern affecting tree improvement programme in sandal. Conservation as well as mass propagation are the two strategies to be given due importance. To initiate any conservation programme, precise knowledge of the factors influencing regeneration and survival of the species is essential. Hence, the present study was undertaken with the objective of investigating the autotrophic and parasitic phase of sandal seedlings growth, the effects of shade on morphology, chlorophyll concentration and chlorophyll fluorescence of sandal seedlings, genetic diversity in sandal seed stands using ISSR markers, and the diversity of fungal isolates causing sandal seedling wilt using RAPD markers. All these factors directly influence regeneration and survival of sandal seedlings in natural forests and plantations.
Resumo:
Department of Marine Geology & Geophysics, Cochin University of Science and Technology
Resumo:
Several studies on the biology and fisheries of mullets, particularly of M cephalus are now available. Different aspects of breeding, larval rearing, seed production, field culture and ecophysiology have also been investigated. However, information on the spermatogenesis in M cephalus as well as L parsia is scanty. Since an understanding of the reproductive strategies is an essential pre-requisite for evolving successful breeding programmes through artificial fertilization and gametic preservation, investigations on spermatogenesis in these species were taken up and the results are presented in this thesis. The thesis is presented in 9 chapters
Resumo:
The study covers theFishing capture technology innovation includes the catching of aquatic animal, using any kind of gear techniques, operated from a vessel. Utilization of fishing techniques varies, depending upon the type of fisheries, and can go from a basic and little hook connected to a line to huge and complex mid water trawls or seines operated by large fishing vessels.The size and autonomy of a fishing vessel is largely determined by its ability to handle, process and store fish in good condition on board, and thus these two characteristics have been greatly influenced by the introduction and utilization of ice and refrigeration machinery. Other technological developments especially hydraulic hauling machinery, fish finding electronics and synthetic twines have also had a major impact on the efficiency and profitability of fishing vessels.A wide variety of fishing gears and practices ranging from small-scale artisanal to advanced mechanised systems are used for fish capture in Kerala. Most important among these fishing gears are trawls, seines, lines, gillnets and entangling nets and traps The modern sector was introduced in 1953 at Neendakara, Shakthikulangara region under the initiative of Indo-Norwegian project (INP). The novel facilities introduced in fishing industry by Indo- Norwegian project accordingly are mechanically operated new boats with new fishing nets. Soon after mechanization, motorization programme gained momentum in Kerala especially in Alleppey, Ernakulam and Kollam districts.