410 resultados para Phagocytosis
Resumo:
Sporotrichosis is a chronic granulomatous mycosis caused by the dimorphic fungus Sporothrix schenckii. The immunological mechanisms involved in the prevention and control of sporotrichosis suggest that cell-mediated immunity plays an important role in protecting the host against S. schenckii. Nonetheless, recent data strongly support the existence of protective Abs against this pathogenic fungus. In a previous study, we showed that passive Ab therapy led to a significant reduction in the number of colony forming unit in the organs of mice when the MAb was injected before and during S. schenckii infection. The ability of opsonization to enhance macrophage damage to S. schenckii and subsequent cytokine production was investigated in this work. Here we show that the fungicidal characteristics of macrophages are increased when the fungus is phagocytosed in the presence of inactivated serum from mice infected with S. schenckii or mAb anti-gp70. Additionally, we show an increase in the levels of pro-inflammatory cytokines such as TNF-a and IL-1 beta. This study provides additional support for the importance of antibodies in protecting against S. schenckii and concludes that opsonization is an important process to increase TNF-a production and fungus killing by macrophages in experimental sporotrichosis.
Resumo:
Monocytes have been categorized in three main subpopulations based on CD14 and CD16 surface expression. Classical monocytes express the CD14(++)CD16(-) CCR2(+) phenotype and migrate to inflammatory sites by quickly responding to CCL2 signaling. Here, we identified and characterized the expansion of a novel monocyte subset during HIV and SIV infection, which were undistinguishable from classical monocytes, based on CD14 and CD16 expression, but expressed significantly lower surface CCR2. Transcriptome analysis of sorted cells demonstrated that the CCR2(low/neg) cells are a distinct subpopulation and express lower levels of inflammatory cytokines and activation markers than their CCR2(high) counterparts. They exhibited impaired phagocytosis and greatly diminished chemotaxis in response to CCL2 and CCL7. In addition, these monocytes are refractory to SIV infection and suppress CD8(+) T cell proliferation in vitro. These cells express higher levels of STAT3 and NOS2, suggesting a phenotype similar to monocytic myeloid-derived cells, which suppress expansion of CD8(+) T cells in vivo. They may reflect an antiproliferative response against the extreme immune activation observed during HIV and SIV infections. In addition, they may suppress antiviral responses and thus, have a role in AIDS pathogenesis. Antiretroviral therapy in infected macaque and human subjects caused this population to decline, suggesting that this atypical phenotype is linked to viral replication. J. Leukoc. Biol. 91: 803-816; 2012.
Resumo:
Susceptibility to infections, autoimmune disorders and tumor progression is strongly influenced by the activity of the endocrine and nervous systems in response to a stressful stimulus. When the adaptive system is switched on and off efficiently, the body is able to recover from the stress imposed. However, when the system is activated repeatedly or the activity is sustained, as during chronic or excessive stress, an allostatic load is generated, which can lead to disease over long periods of time. We investigated the effects of chronic cold stress in BALB/c mice (4 degrees C/4 h daily for 7 days) on functions of macrophages. We found that chronic cold stress induced a regulatory phenotype in macrophages, characterized by diminished phagocytic ability, decreased TNF-alpha and IL-6 and increased IL-10 production. In addition, resting macrophages from mice exposed to cold stress stimulated spleen cells to produce regulatory cytokines, and an immunosuppressive state that impaired stressed mice to control Trypanosoma cruzi proliferation. These regulatory effects correlated with an increase in macrophage expression of 11 beta-hydroxysteroid dehydrogenase, an enzyme that converts inactive glucocorticoid into its active form. As stress is a common aspect of modern life and plays a role in the etiology of many diseases, the results of this study are important for improving knowledge regarding the neuro-immune-endocrine interactions that occur during stress and to highlight the role of macrophages in the immunosuppression induced by chronic stress. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [ reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.
Resumo:
Our data suggest that impaired activity of myeloperoxidase (MPO) may play an important role in the dysfunction of neutrophils from hyperglycemic rats. Neutrophil biochemical pathways include the NADPH oxidase system and the MPO enzyme. They both play important role in the killing function of neutrophils. The effect of hyperglycemia on the activity of these enzymes and the consequences with regard to Candida albicans phagocytosis and the microbicidal property of rat peritoneal neutrophils is evaluated here. The NADPH oxidase system activity was measured using chemiluminescence and cytochrome C reduction assays. MPO activity was measured by monitoring HOCl production, and MPO protein expression was analysed using Western blot and immunofluorescence. C. albicans phagocytosis and death were evaluated by optical microscopy using the MayGrunwaldGiemsa staining method. ROS generation kinetic was slightly delayed in the diabetic group. MPO expression levels were higher in diabetic neutrophils; however, MPO activity was decreased in these same neutrophils compared with the controls. C. albicans phagocytosis and killing were lower in the diabetic neutrophils. Based on our experimental model, the phagocytic and killing functions of neutrophil phagocytosis are impaired in diabetic rats because of the decreased production of HOCl, highlighting the importance of MPO in the microbicidal function of neutrophils. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
The objective of this work was to determine the hematological parameters and the phagocytic capacity of peritoneal macrophages of fat snook related to sex, stage of gonadal maturation and seasonal cycle. Blood was collected from 135 animals (78 females and 57 males) and used for determinations of: erythrocyte number, hematocrit, hemoglobin, erythrocyte indices mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), total and differential leukocyte counts, and thrombocyte count. The phagocytic capacity and phagocytic index were determined after Saccharomyces cerevisiae inoculation in the peritoneal cavity of the animals. The hematological results according to sex showed that the erythrocyte, total leukocyte and thrombocyte counts were statistically higher in males than females, with the latter showing a higher MCV. Concerning to erythrocyte count, hematocrit and hemoglobin concentration analyzed separately by sex and stage of gonadal maturation, males were found to have significantly elevated values in the mature stage and decreased levels in the resting stage. The results of the erythrocyte and leukocyte series, thrombocytes and phagocytic activity related to seasonal cycle showed significant differences in both sexes, where hematocrit and hemoglobin concentration were lower in winter and higher in the other seasons, mean corpuscular volume was higher in the summer and lower in the winter and fall, total leukocytes and thrombocytes lower in the spring and higher in the fall, lymphocytes low in the winter and summer and high in the spring and phagocytic capacity and phagocytic index high in the summer and low in the winter and fall. The results showed that the hematological values in males are statistically higher than those in females, the erythrocyte values in males increase with the progression of gonadal maturation and that winter is the season of the year least favorable for hematological and phagocytic responses for survival of fat snook kept in captivity. The parameters studied could be utilized in the evaluation of the health status of this species in captivity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Clofazimine and clarithromycin are used to treat leprosy and infections caused by Mycobacterium avium complex. Little data on the toxicity of co-administration of these two drugs are available. Here we evaluated the potential adverse effects of polytherapy with these two drugs in male Wistar rats by determining WBCs counts and other blood cell counts, neutrophilic phagocytosis, and burst oxidative, by flow cytometry. We observed an increase in WBCs, in multiple-dose regimens, and in polymorphonuclear cells, in both single- clarithromycin only and multiple dose regimens. We also observed a reduction in mononuclear cell counts in single and multiple doses. The drugs seem to reverse the mononuclear and polymorphonuclear cell ratio. An increase in oxidative burst was observed in animals treated with the drugs administered either individually or combined. In conclusion, clofazimine and clarithromycin change WBCs counts. Our results may contribute for a better understanding of the mechanisms related to the effects of co-administrating the two drugs.
Resumo:
5-lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.
Resumo:
Studies on the environmental consequences of stress are relevant for economic and animal welfare reasons. We recently reported that long-term heat stressors (31 +/- 1 degrees C and 36 +/- 1 degrees C for 10 h/d) applied to broiler chickens (Gallus gallus domesticus) from d 35 to 42 of life increased serum corticosterone concentrations, decreased performance variables and the macrophage oxidative burst, and produced mild, multifocal acute enteritis. Being cognizant of the relevance of acute heat stress on tropical and subtropical poultry production, we designed the current experiment to analyze, from a neuroimmune perspective, the effects of an acute heat stress (31 +/- 1 degrees C for 10 h on d 35 of life) on serum corticosterone, performance variables, intestinal histology, and peritoneal macrophage activity in chickens. We demonstrated that the acute heat stress increased serum corticosterone concentrations and mortality and decreased food intake, BW gain, and feed conversion (P < 0.05). We did not find changes in the relative weights of the spleen, thymus, and bursa of Fabricius (P > 0.05). Increases in the basal and the Staphylococcus aureus-induced macrophage oxidative bursts and a decrease in the percentage of macrophages performing phagocytosis were also observed. Finally, mild, multifocal acute enteritis, characterized by the increased presence of lymphocytes and plasmocytes within the lamina propria of the jejunum, was also observed. We found that the stress-induced hypothalamic-pituitary-adrenal axis activation was responsible for the negative effects observed on chicken performance and immune function as well as for the changes in the intestinal mucosa. The data presented here corroborate with those presented in other studies in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.
Resumo:
The influences of age in calves' immune system are described in their first phase of life. We hypothesized that variations that occur in the main mechanisms of lung innate response can help to identify periods of greater susceptibility to the respiratory diseases that affect calves in the first stage of their life. This study aimed to evaluate the innate immune system. Nine healthy calves were monitored for 3 mo and 8 immunologic evaluations were performed. Bronchoalveolar lavage samples were recovered by bronchoscopy. The alveolar macrophages in samples were identified by protein expression of cluster of differentiation 14 (CD14) and underwent functional evaluation of phagocytosis (Staphylococcus aureus stained with propidium iodide and Escherichia coli). Data was assessed by one-way ANOVA (unstacked and parametric) and the Mann-Whitney test (nonparametric). Functional alterations in CD14-positive phagocytes were observed, with punctual higher intensity of phagocytosis in the third week and its decrease starting at 45 d of life. A gradual increase in phagocytosis rate was observed starting at this date. It is concluded that from 45 d of life on, alveolar macrophages have less phagocytic capacity but more cells perform this function. We suggest that this occurs because lung macrophages of calves start to maintain their immune response without passive immunity influence. Until 90 d of life, calves did not achieve the stability to conclude the maturation of local innate immune response.
Resumo:
Pattern recognition receptors for fungi include dectin-1 and mannose receptor, and these mediate phagocytosis, as well as production of cytokines, reactive oxygen species, and the lipid mediator leukotriene B-4 (LTB4). The influence of G protein-coupled receptor ligands such as LTB4 on fungal pattern recognition receptor expression is unknown. In this study, we investigated the role of LTB4 signaling in dectin-1 expression and responsiveness in macrophages. Genetic and pharmacologic approaches showed that LTB4 production and signaling through its high-affinity G protein-coupled receptor leukotriene B4 receptor 1 (BLT1) direct dectin-1-dependent binding, ingestion, and cytokine production both in vitro and in vivo. Impaired responses to fungal glucans correlated with lower dectin-1 expression in macrophages from leukotriene (LT)- and BLT1-deficent mice than their wildtype counterparts. LTB4 increased the expression of the transcription factor responsible for dectin-1 expression, PU.1, and PU.1 small interfering RNA abolished LTB4-enhanced dectin-1 expression. GM-CSF controls PU.1 expression, and this cytokine was decreased in LT-deficient macrophages. Addition of GM-CSF to LT-deficient cells restored expression of dectin-1 and PU.1, as well as dectin-1 responsiveness. In addition, LTB4 effects on dectin-1, PU.1, and cytokine production were blunted in GM-CSF-/- macrophages. Our results identify LTB4-BLT1 signaling as an unrecognized controller of dectin-1 transcription via GM-CSF and PU.1 that is required for fungi-protective host responses. The Journal of Immunology, 2012, 189: 906-915.
Resumo:
The present study assesses the oxidative burst activity from polymorphonuclear leukocytes (PMNLs) from bovine leukemia virus (BLV)-infected cows. Fifteen clinically healthy cows were divided into serologically positive cows without any hematological alteration, serologically positive animals with persistent lymphocytosis (PL) and healthy serologically negative cows. The oxidative burst activity from the PMNLs was evaluated by now cytometry using 2',7'-dichlorofluorescein diacetate as a probe. PMNLs from each cow were incubated with heat-killed Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) to stimulate oxidative burst activity. The results of the present work showed no significant difference in the oxidative burst activity without any stimulus and elicited by S. caucus. Conversely, a decrease in the oxidative burst index induced by E. coli in PMNLs was observed in BLV-infected cows.
Resumo:
We have cloned and characterized for the first time an allograft inflammatory factor 1 (Sn-AIF-1) from the Antarctic sea urchin. We report the cloning of Sn-AIF-1 cDNA and the characterization of its expression in coelomocytes after a bacterial challenge. The cDNA Sn-AIF-1 has a size of 608 bp and encodes a polypeptide of 151 aa. The deduced amino acid sequence has a putative size of 17.430 Da, an isoelectric point of 4.92, and shows 2 elongation factor handlike motifs that normally bind calcium ions. BLAST analysis revealed close matches with other known AIF-1. The deduced amino acid sequence of Sn-AIF-1 showed high homology with AIF-1 in vertebrates such as fish, mice, and humans; and in the case of invertebrates, the major degree of identity (55%) was with a predicted sequence of the purple sea urchin AIF-1, and 52% corresponded to a sponge. Expression of Sn-AIF-1 mRNA was analyzed by qPCR. Sn-AIF-1 mRNA expression was measured from coelomocytes after a bacterial challenge using RT-PCR and revealed that the gene was upregulated after 24 h. Sn-AIF-1 could participate in the inflammatory response, particularly in the activation of coelomocytes and their survival.
Resumo:
Marine sponges of the order Verongida are a rich source of biologically active bromotyrosine-derived secondary metabolites. However, none of these compounds are known to display anti-inflammatory activity. In the present investigation, we report the anti-inflammatory effects of 11-oxoaerothionin isolated from the Verongida sponge Aplysina fistularis. When RAW264.7 cells and primary macrophages were preincubated with 11-oxoaerothionin and stimulated with LPS (lipopolysaccharide), a concentration-dependent inhibition of iNOS (inducible nitric oxide synthase) protein and NO2- (Nitrite) production were observed. The same effect was observed when proinflammatory cytokines and PGE(2) (Prostaglandin E2) production was evaluated. In summary, we demonstrated that in the presence of LPS, 11-oxoaerothionin suppresses NO2 and iNOS expression as well as inflammatory cytokines and PGE(2).
Resumo:
BACKGROUND AND PURPOSE Phagocyte function is critical for host defense against infections. Defects in phagocytic function lead to several primary immunodeficiencies characterized by early onset of recurrent and severe infections. In this work, we further investigated the effects of BAY 41-2272, a soluble guanylate cyclase (sGC) agonist, on the activation of human peripheral blood monocytes (PBM) and THP-1 cells. EXPERIMENTAL APPROACH THP-1 cells and PBM viability was evaluated by methylthiazoletetrazolium assay; reactive oxygen species production by lucigenin chemiluminescence; gene and protein expression of NAPDH oxidase components by qRT-PCR and Western blot analysis, respectively; phagocytosis and microbicidal activity by co-incubation, respectively, with zymosan and Escherichia coli; and cytokine release by elisa. KEY RESULTS BAY 41-2272, compared with the untreated group, increased spreading of monocytes by at least 35%, superoxide production by at least 50%, and gp91PHOX and p67PHOX gene expression 20 to 40 times, in both PBM and THP-1 cells. BAY 41-2272 also augmented phagocytosis of zymosan particles threefold compared with control, doubled microbicidal activity against E. coli and enhanced the release of TNF-a and IL-12p70 by both PBM and THP-1 cells. Finally, by inhibiting sGC with ODQ, we showed that BAY 41-2272-induced superoxide production and phagocytosis is not dependent exclusively on sGC activation. CONCLUSIONS AND IMPLICATIONS In addition to its ability to induce vasorelaxation and its potential application for therapy of vascular diseases, BAY 41-2272 was shown to activate human mononuclear phagocytes. Hence, it is a novel pro-inflammatory drug that may be useful for controlling infections in the immunocompromised host.