945 resultados para Pests of plant
Resumo:
OBJECTIVES The objective was to evaluate homeopathic basic research studies that use plant-based bioassays. With this in view, a compilation was made of the findings of three systematic literature reviews covering plant-based bioassays in the three fields of healthy, abiotically, or biotically stressed plants. This compilation focused on investigations using advanced experimental methods and detailed descriptions, also with the aim of supporting the design of future experiments. METHODS Publications included had to report on studies into the effects of homeopathic preparations on whole plants, seeds, plant parts and cells. Outcomes had to be measured by established procedures and statistically evaluated. A Manuscript Information Score (MIS) was applied using predefined criteria to identify publications with sufficient information for adequate interpretation (MIS ≥ 5). Additional evaluation focused on the use of adequate controls to investigate specific effects of homeopathic preparations, and on the use of systematic negative control (SNC) experiments to ensure the stability of the bioassay. Only a fraction of the studies reported here were performed with 'ultra high' dilutions, whereas other studies were performed with moderate or high dilutions. RESULTS A total of 157 publications were identified, describing a total of 167 experimental studies. 84 studies included statistics and 48 had a MIS ≥ 5, thus allowing adequate interpretation. 29 studies had adequate controls to identify specific effects of homeopathic preparations, and reported significant effects of decimal and centesimal homeopathic potencies, including dilution levels beyond Avogadro's number. 10 studies reported use of SNC experiments, yielding evidence for the stability of the experimental set-up. CONCLUSION Plant models appear to be a useful approach for investigating basic research questions relating to homeopathic preparations, but more independent replication trials are needed in order to verify the results found in single experiments. Adequate controls and SNC experiments should be implemented on a routine basis to exclude false-positive results.
Resumo:
Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions. © 2016 Macmillan Publishers Limited.
Resumo:
Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical–basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical–basal position or the identity of the induced structures.
Resumo:
Plant macrofossils from the end of the Younger Dryas were analysed at three sites, Gerzensee (603 m asl), Leysin (1230 m asl), and Zeneggen (1510 m asl). For the first two sites an oxygen-isotope record is also available that was used to develop a time scale (Schwander et al., this volume); dates refer therefore to calibrated years according to the GRIP time scale. Around Gerzensee a pine forest with some tree birches grew during the Younger Dryas. With the onset of the isotopic shift initiating the rapid warming (about 11,535 cal. years before 1950), the pine forest became more productive and denser. At Leysin no trees except some juniper scrub grew during the Younger Dryas. Tree birches, pine, and poplar immigrated from lower altitudes and arrived after the end of the isotopic shift (about 11,487 B.P.), i.e., at the beginning of the Preboreal (at about 11,420 B.P.). Zeneggen is situated somewhat higher than Leysin, but single tree birches and pines survived the Younger Dryas at the site. At the beginning of the Preboreal their productivity and population densities increased. Simultaneously shifts from Nitella to Chara and from silt to gyttja are recorded, all indicating rapidly warming conditions and higher nutrient levels of the lake water (and probably of the soils in the catchment). At Gerzensee the beginning of the Younger Dryas was also analysed: the beginning of the isotopic shift correlates within one sample (about 15 years) to rapid decreases of macrofossils of pines and tree birches.
Resumo:
When plants are infected with avirulent pathogens, a selected group of plant cells rapidly die in a process commonly called the hypersensitive response (HR). Some mutations and overexpression of some unrelated genes mimic the HR lesion and associated defense responses. In all of these situations, a genetically programmed cell death pathway is activated wherein the cell actively participates in killing itself. Here we report a developmentally and environmentally regulated HR-like cell death in potato leaves constitutively expressing bacterial pyruvate decarboxylase (PDC). Lesions first appeared on the tip of fully expanded source leaves. Lesion formation was accompanied by activation of multiple defense responses and resulted in a significant resistance toPhytophthora infestans. The transgenic plants showed a five- to 12-fold increase in leaf tissue acetaldehyde and exported two- to 10-fold higher amounts of sucrose compared to the wild-type. When plants were grown at a higher temperature, both the lesion phenotype and sucrose export were restored to wild-type situations. The reduced levels of acetaldehyde at the elevated temperature suggested that the interplay of acetaldehyde with environmental and physiological factors is the inducer of lesion development. We propose that sugar metabolism plays a crucial role in the execution of cell death programs in plants.
Miocene-Pliocene record of Pollen, charcoal and carbon isotopes of plant waxes of ODP Hole 175-1081A
Resumo:
Modern savannah grasslands were established during the late Miocene and Pliocene (8-3 million years ago). In the tropics, grasslands are dominated by grasses that use the C4 photosynthetic pathway, rather than the C3 pathway. The C4 pathway is better adapted to warm, dry and low-CO2 conditions, leading to suggestions that declining atmospheric CO2 levels, increasing aridity and enhanced rainfall seasonality allowed grasses using this pathway to expand during this interval. The role of fire in C4 expansion may have been underestimated. Here we use analyses of pollen, microscopic charcoal and the stable isotopic composition of plant waxes from a marine sediment core off the coast of Namibia to reconstruct the relative timing of changes in plant composition and fire activity for the late Miocene and Pliocene. We find that in southwestern Africa, the expansion of C4 grasses occurred alongside increasing aridity and enhanced fire activity. During further aridification in the Pliocene, the proportion of C4 grasses in the grasslands increased, while the grassland contracted and deserts and semi-deserts expanded. Our results are consistent with the hypothesis that ecological disturbance by fire was an essential feedback mechanism leading to the establishment of C4 grasslands in the Miocene and Pliocene.
Resumo:
Fil: Pontis, Rafael E..
Resumo:
A depression filled with Late Glacial and Holocene sediments was excavated during the geological exploration and recovery of a dump area near Tessin close to Rostock, and initiated the studies of the present paper. Pebble analysis of three exposed or respectively drilled till horizons as well as pollenanalytical, carpological and faunistical studies carried out allow the stratigraphical subdivision of the Quaternary sequence of the dump area. The basal till was probably the result of dead ice decay, and was lithostratigraphically assigned to the Pomerian Stage (qw2). The palynological results of boreholes RKS 19/93 and A/92 reveal pre-Allerod and other sediments instead of the expected interweichselian deposits. Based on the palynological and carpological findings, we correlated the beginning of the late glacial development in the locality with the end of the Meiendorf-lnterstadial sensu Menke in Bock et al. (1985, doi:10.3285/eg.35.1.18). The limnic-telmatic sedimentation could be observed pollen floristically probably starting with the Meiendorf-lnterstadial (Hippophae-Betula nana-phase) followed by the Bolling-(Betula nana-B. alba s.l.-Artemisia-Helianthemum-Poaceae-phase) and the Allerad-lnterstadial [Betula alba s.l.-(Pinus)-Cyperaceae-phase] lasting up to the Younger Dryas (Juniperus-Artemisia-Poaceae-phase). Sedimentation closed during the Younger Dryas with the accumulation of fine sands. It was reactivated later during the Holocene due to the anthropogene influence (Older and Younger Subatlantic, dampness of the depression by clearing).
Resumo:
A phytosociological study was conducted in the National Park of Alta Murgia in the Apulia region (Southern Italy) to determine the adverse effects of metal contamination of soils on the distribution of plant communities. The phytosociological analyses have shown a remarkable biodiversity of vegetation on non-contaminated soils, while biodiversity appeared strongly reduced on metal-contaminated soils. The area is naturally covered by a wide steppic grassland dominated by Stipa austroitalica Martinovsky subsp. austroitalica. Brassicaceae such as Sinapis arvensis L. are the dominating species on moderated contaminated soils, whereas spiny species of Asteraceae such as Silybum marianum (L.) Gaertn. and Carduus pycnocephalus L. subsp. pycnocephalus are the dominating vegetation on heavily metal-contaminated soils. The presence of these spontaneous species on contaminated soils suggest their potential for restoration of degraded lands by phytostabilization strategy.
Resumo:
While engaged in geoecological field work on Victoria Island, 277 new plants could be recorded for the vicinities of Holman, Cambridge Bay, Wellington Bay, Mt. Pelly, Richardson Islands, Hadley Bay, and Minto lnlet; 8 of them were new for Victoria Island, 6 for the western Canadian arctic archipelago.
Resumo:
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The Exploitation Ecosystem Hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.