974 resultados para Particle Distribution
Resumo:
This work presents and describes in detail the pressure profile in a conical tube with the unavoidable steady-state outgassing, plus a transient gas source, like, for instance, in an accelerator, when particles from the beam hit the walls. Mathematical and physical formulations are given and detailed; specific conductance, specific throughput and a detailed discussion about the boundary conditions are presented. These concepts and approach are applied to usual realistic cases, such as conical tubes, with typical laboratory dimensions. © 2005 IEEE.
Resumo:
This study evaluated the effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Disc-shaped zirconia specimens (Ø: 15mm, thickness: 1.2mm) (N=32) were submitted to one of the air-particle abrasion protocols (n=8 per group): (a) 50μm Al2O3 particles, (b) 110μm Al2O3 particles coated with silica (Rocatec Plus), (c) 30μm Al2O3 particles coated with silica (CoJet Sand) for 20s at 2.8bar pressure. Control group received no air-abrasion. All specimens were initially cyclic loaded (×20,000, 50N, 1Hz) in water at 37°C and then subjected to biaxial flexural strength testing where the conditioned surface was under tension. Zirconia surfaces were characterized and roughness was measured with 3D surface profilometer. Phase transformation from tetragonal to monoclinic was determined by Raman spectroscopy. The relative amount of transformed monoclinic zirconia (FM) and transformed zone depth (TZD) were measured using XRD. The data (MPa) were analyzed using ANOVA, Tukey's tests and Weibull modulus (m) were calculated for each group (95% CI). The biaxial flexural strength (MPa) of CoJet treated group (1266.3±158A) was not significantly different than that of Rocatec Plus group (1179±216.4A,B) but was significantly higher than the other groups (Control: 942.3±74.6C; 50μm Al2O3: 915.2±185.7B,C). Weibull modulus was higher for control (m=13.79) than those of other groups (m=4.95, m=5.64, m=9.13 for group a, b and c, respectively). Surface roughness (Ra) was the highest with 50μm Al2O3 (0.261μm) than those of other groups (0.15-0.195μm). After all air-abrasion protocols, FM increased (15.02%-19.25%) compared to control group (11.12%). TZD also showed increase after air-abrasion protocols (0.83-1.07μm) compared to control group (0.59μm). Air-abrasion protocols increased the roughness and monoclinic phase but in turn abrasion with 30μm Al2O3 particles coated with silica has increased the biaxial flexural strength of the tested zirconia. © 2013 Elsevier Ltd.
Resumo:
We solve the three-body bound-state problem in three dimensions for mass imbalanced systems of two identical bosons and a third particle in the universal limit where the interactions are assumed to be of zero range. The system displays the Efimov effect and we use the momentum-space wave equation to derive formulas for the scaling factor of the Efimov spectrum for any mass ratio assuming either that two or three of the two-body subsystems have a bound state at zero energy. We consider the single-particle momentum distribution analytically and numerically and analyze the tail of the momentum distribution to obtain the three-body contact parameter. Our findings demonstrate that the functional form of the three-body contact term depends on the mass ratio, and we obtain an analytic expression for this behavior. To exemplify our results, we consider mixtures of lithium with either two caesium or rubidium atoms which are systems of current experimental interest. © 2013 American Physical Society.
Resumo:
Measurements are presented of the production of primary KS0 and Λ particles in proton-proton collisions at √s=7 TeV in the region transverse to the leading charged-particle jet in each event. The average multiplicity and average scalar transverse momentum sum of KS0 and Λ particles measured at pseudorapidities |η|<2 rise with increasing charged-particle jet pT in the range 1-10 GeV/c and saturate in the region 10-50 GeV/c. The rise and saturation of the strange-particle yields and transverse momentum sums in the underlying event are similar to those observed for inclusive charged particles, which confirms the impact-parameter picture of multiple parton interactions. The results are compared to recent tunes of the pythia Monte Carlo event generator. The pythia simulations underestimate the data by 15%-30% for KS0 mesons and by about 50% for Λ baryons, a deficit similar to that observed for the inclusive strange-particle production in non-single-diffractive proton-proton collisions. The constant strange- to charged-particle activity ratios with respect to the leading jet pT and similar trends for mesons and baryons indicate that the multiparton-interaction dynamics is decoupled from parton hadronization, which occurs at a later stage. © 2013 CERN, for the CMS Collaboration Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study aims to determine the atomic ratio of O/C in an archaeological black earth (ABE) profile of the Ilha de Terra site, a region of Caxiuanã in the Pará State, Brazil, to determine the types of pyrogenic carbon (PyC) particles and to infer the source of biomass and burning temperature necessary to produce the PyC. The O/C ratios were monitored using scanning electron microscopy combined with energy dispersive spectroscopy (SEM/EDS). The results indicated atomic ratios for clay, silt and fine sand fractions that were between those registered for the PyC particles types: condensed combustion (CC) (0.09, 0.1, 0.13), charcoal (0.32, 0.31, 0.34) and char (0.43, 0.45, 0.52). CC is the predominant type of particle found because of the high firing temperature (> 350 °C), which is consistent with the probable biomass sources of wood, cellulose and lignin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Both Semi-Supervised Leaning and Active Learning are techniques used when unlabeled data is abundant, but the process of labeling them is expensive and/or time consuming. In this paper, those two machine learning techniques are combined into a single nature-inspired method. It features particles walking on a network built from the data set, using a unique random-greedy rule to select neighbors to visit. The particles, which have both competitive and cooperative behavior, are created on the network as the result of label queries. They may be created as the algorithm executes and only nodes affected by the new particles have to be updated. Therefore, it saves execution time compared to traditional active learning frameworks, in which the learning algorithm has to be executed several times. The data items to be queried are select based on information extracted from the nodes and particles temporal dynamics. Two different rules for queries are explored in this paper, one of them is based on querying by uncertainty approaches and the other is based on data and labeled nodes distribution. Each of them may perform better than the other according to some data sets peculiarities. Experimental results on some real-world data sets are provided, and the proposed method outperforms the semi-supervised learning method, from which it is derived, in all of them.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In situ megascale hydraulic diffusivities (D) of a confined loess aquifer were estimated at various scales (10 <= L <= 1500 m) by a finite difference model, and laboratory microscale diffusivities of a loess sample by empirical formulas. A scatter plot reveals that D fits to a single power function of L, providing that microscale diffusivities are assigned to L = 1 m and that differences in diffusivity observed between micro- and megascales are assigned to medium heterogeneity appraised by variations in the curvature and slope of natural hydraulic head waves propagating through the aquifer. Subsequently, a general power relationship between D and L is defined where the base and exponent terms stand for the aquifer storage capability under a confined regime of flow, for the microscale hydraulic conductivity and specific yield of loess, and for the changes in curvature and slope of hydraulic head waves relative to values defined at unit scale.[GRAPHICS]Editor Z.W. Kundzewicz
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The centrifuge technique was used to investigate the influence of particle size, applied compression, and substrate material (stainless steel, glass, Teflon, and poly(vinyl chloride)) on particle-surface adhesion force. For this purpose, phosphatic rock (rho(p) = 3090 kg/m(3)) and manioc starch particles (rho(p) = 1480 kg/m(3)) were used as test particles. A microcentrifuge that reached a maximum rotation speed of 14 000 rpm and which contained specially designed centrifuge tubes was used in the adhesion force measurements. The curves showed that the adhesion force profile followed a normal log distribution. The adhesion force increased linearly with particle size and with the increase of each increment of compression force. The manioc starch particles presented greater adhesion forces than the phosphatic rock particles for all particle sizes studied. The glass substrate showed a higher adherence than the other materials, probably due to its smoother topographic surface roughness in relation to the other substrata.
Resumo:
In tropical forests, the environmental heterogeneity can provide niche partitioning at local scales and determine the diversity and plant species distribution. Thus, this study aimed to investigate the variations of tree species structure and distribution in response to relief and soil profile features in a portion of the largest remnant of Brazilian Atlantic rain forest. All trees >= 5 cm diameter at breast height were recorded in two 0.99 ha plots. Topographic survey and a soil characterization were accomplished in both plots. Topsoil samples (0-20 cm) were taken from 88 quadrats and analyzed for chemical and particle size properties. Differences for both diversity and tree density were identified among three kinds of soils. A canonical correspondence analysis (CCA) indicated that the specific abundance varied among the three kinds of soils mapped: a shallow Udept - Orthent / Aquent gradient, probably due to differences in soil drainage. Nutrient content was less likely to affect tree species composition and distribution than relief, pH, Al3+, and soil texture. Some species were randomly distributed and did not show restriction to relief and soil properties. However, preferences in niche occupation detected in this study, derived from the catenary environments found, rise up as an important explanation for the high tree species diversity in tropical forests.
Resumo:
In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 mu m in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.
Resumo:
Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748519]