996 resultados para Organic fibers
Resumo:
The conformation, organization, and phase transitions of alkyl chains in organic-inorganic hybrids based on the double pervoskite-slab lead iodides, (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 (n = 11, 13, 15, 17) have been investigated by X-ray diffraction, calorimetry, and infrared vibrational spectroscopy. In these hybrid solids, double pervoskite (CH3NH3)Pb2I7 slabs are interleaved with alkyl ammonium chains with the anchored alkyl chains arranged as tilted bilayers and adopting a planar all-trans conformation at room temperature. The (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 compounds exhibit a single reversible phase transition above room temperature with the associated enthalpy change varying linearly with alkyl chain length. This transition corresponds to the melting in two-dimensions of the alkyl chains of the anchored bilayer and is characterized by increased conformational disorder of the methylene units of the chain and loss of tilt angle coherence leading to an increase in the interslab spacing. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting of the anchored bilayer is established. It is found that, irrespective of the alkyl chain length, melting occurs when at least 60% of the chains in the anchored bilayer of (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 have one or more gauche defects. This concentration is determined by the underlying lattice to which the alkyl chains are anchored.
Resumo:
A novel synthesis of inorganic-organic hybrid films containing well dispersed and almost uniform size Ag nanoparticles in agar-agar matrix has been reported. The films are found to be highly stable for more than a year. The colloidal particles of Ag can be obtained in large quantities in the form of a film or in the gel form when dispersed in agar-agar or by dissolving in a suitable solvent as solution. Characterization has been done by UV-visible spectroscopy and TEM. The hybrid may be of interest to study third-order non-linear susceptibility.
Resumo:
Novel chromogenic thiourea based sensors 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl ether 1 and 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl methane 2 having nitrophenyl group as signaling unit have been synthesized and characterized by spectroscopic techniques and X-ray crystallography. The both sensors show visual detection, UV-vis and NMR spectral changes in presence of fluoride and cyanide anions in organic solvent as well as in aqueous medium. The absorption spectra indicated the formation of complex between host and guest is in 1:2 stoichiometric ratios. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Although hundreds of thousands of organic products are traded on a daily basis, it is less known how imported organic products are evaluated by consumers in an importing country. The paper analyzes Japanese wine point of sale (POS) data to examine whether consumers differentiate between local and imported organic products. The results of our hedonic analyses show that the premium for imported organic red (white) wines is about 42.996 % (8.872 %) while that for domestic red (white) organic wines is about 6.440 % (1.214 %), implying that Japanese consumers pay higher premiums for imported organic agricultural products than for those produced in Japan.
Resumo:
Volatile organic compounds (VOCs) in the headspace of bubble chambers containing branches of live coral in filtered reef seawater were analysed using gas chromatography with mass spectrometry (GC-MS). When the coral released mucus it was a source of dimethyl sulfide (DMS) and isoprene; however, these VOCs were not emitted to the chamber headspace from mucus-free coral. This finding, which suggests that coral is an intermittent source of DMS and isoprene, was supported by the observation of occasional large pulses of atmospheric DMS (DMSa) over Heron Island reef on the southern Great Barrier Reef (GBR), Australia, in the austral winter. The highest DMSa pulse (320 ppt) was three orders of magnitude less than the DMS mixing ratio (460 ppb) measured in the headspace of a dynamically purged bubble chamber containing a mucus-coated branch of Acropora aspera indicating that coral reefs can be strong point sources of DMSa. Static headspace GC-MS analysis of coral fragments identified mainly DMS and seven other minor reduced sulfur compounds including dimethyl disulfide, methyl mercaptan, and carbon disulfide, while coral reef seawater was an indicated source of methylene chloride, acetone, and methyl ethyl ketone. The VOCs emitted by coral and reef seawater are capable of producing new atmospheric particles < 15 nm diameter as observed at Heron Island reef. DMS and isoprene are known to play a role in low-level cloud formation, so aerosol precursors such as these could influence regional climate through a sea surface temperature regulation mechanism hypothesized to operate over the GBR.
Resumo:
The conversion of a metastable phase into a thermodynamically stable phase takes place via the formation of clusters. Clusters of different sizes are formed spontaneously within the metastable mother phase, but only those larger than a certain size, called the critical size, will end up growing into a new phase. There are two types of nucleation: homogeneous, where the clusters appear in a uniform phase, and heterogeneous, when pre-existing surfaces are available and clusters form on them. The nucleation of aerosol particles from gas-phase molecules is connected not only with inorganic compounds, but also with nonvolatile organic substances found in atmosphere. The question is which ones of the myriad of organic species have the right properties and are able to participate in nucleation phenomena. This thesis discusses both homogeneous and heterogeneous nucleation, having as theoretical tool the classical nucleation theory (CNT) based on thermodynamics. Different classes of organics are investigated. The members of the first class are four dicarboxylic acids (succinic, glutaric, malonic and adipic). They can be found in both the gas and particulate phases, and represent good candidates for the aerosol formation due to their low vapor pressure and solubility. Their influence on the nucleation process has not been largely investigated in the literature and it is not fully established. The accuracy of the CNT predictions for binary water-dicarboxylic acid systems depends significantly on the good knowledge of the thermophysical properties of the organics and their aqueous solutions. A large part of the thesis is dedicated to this issue. We have shown that homogeneous and heterogeneous nucleation of succinic, glutaric and malonic acids in combination with water is unlikely to happen in atmospheric conditions. However, it seems that adipic acid could participate in the nucleation process in conditions occurring in the upper troposphere. The second class of organics is represented by n-nonane and n-propanol. Their thermophysical properties are well established, and experiments on these substances have been performed. The experimental data of binary homogeneous and heterogeneous nucleation have been compared with the theoretical predictions. Although the n-nonane - n-propanol mixture is far from being ideal, CNT seems to behave fairly well, especially when calculating the cluster composition. In the case of heterogeneous nucleation, it has been found that better characterization of the substrate - liquid interaction by means of line tension and microscopic contact angle leads to a significant improvement of the CNT prediction. Unfortunately, this can not be achieved without well defined experimental data.
Resumo:
Volatile organic compounds (VOCs) affect atmospheric chemistry and thereafter also participate in the climate change in many ways. The long-lived greenhouse gases and tropospheric ozone are the most important radiative forcing components warming the climate, while aerosols are the most important cooling component. VOCs can have warming effects on the climate: they participate in tropospheric ozone formation and compete for oxidants with the greenhouse gases thus, for example, lengthening the atmospheric lifetime of methane. Some VOCs, on the other hand, cool the atmosphere by taking part in the formation of aerosol particles. Some VOCs, in addition, have direct health effects, such as carcinogenic benzene. VOCs are emitted into the atmosphere in various processes. Primary emissions of VOC include biogenic emissions from vegetation, biomass burning and human activities. VOCs are also produced in secondary emissions from the reactions of other organic compounds. Globally, forests are the largest source of VOC entering the atmosphere. This thesis focuses on the measurement results of emissions and concentrations of VOCs in one of the largest vegetation zones in the world, the boreal zone. An automated sampling system was designed and built for continuous VOC concentration and emission measurements with a proton transfer reaction - mass spectrometer (PTR-MS). The system measured one hour at a time in three-hourly cycles: 1) ambient volume mixing-ratios of VOCs in the Scots-pine-dominated boreal forest, 2) VOC fluxes above the canopy, and 3) VOC emissions from Scots pine shoots. In addition to the online PTR-MS measurements, we determined the composition and seasonality of the VOC emissions from a Siberian larch with adsorbent samples and GC-MS analysis. The VOC emissions from Siberian larch were reported for the fist time in the literature. The VOC emissions were 90% monoterpenes (mainly sabinene) and the rest sesquiterpenes (mainly a-farnesene). The normalized monoterpene emission potentials were highest in late summer, rising again in late autumn. The normalized sesquiterpene emission potentials were also highest in late summer, but decreased towards the autumn. The emissions of mono- and sesquiterpenes from the deciduous Siberian larch, as well as the emissions of monoterpenes measured from the evergreen Scots pine, were well described by the temperature-dependent algorithm. In the Scots-pine-dominated forest, canopy-scale emissions of monoterpenes and oxygenated VOCs (OVOCs) were of the same magnitude. Methanol and acetone were the most abundant OVOCs emitted from the forest and also in the ambient air. Annually, methanol and mixing ratios were of the order of 1 ppbv. The monoterpene and sum of isoprene 2-methyl-3-buten-2-ol (MBO) volume mixing-ratios were an order of magnitude lower. The majority of the monoterpene and methanol emissions from the Scots-pinedominated forest were explained by emissions from Scots pine shoots. The VOCs were divided into three classes based on the dynamics of the summer-time concentrations: 1) reactive compounds with local biological, anthropogenic or chemical sources (methanol, acetone, butanol and hexanal), 2) compounds whose emissions are only temperaturedependent (monoterpenes), 3) long-lived compounds (benzene, acetaldehyde). Biogenic VOC (methanol, acetone, isoprene MBO and monoterpene) volume mixing-ratios had clear diurnal patterns during summer. The ambient mixing ratios of other VOCs did not show this behaviour. During winter we did not observe systematical diurnal cycles for any of the VOCs. Different sources, removal processes and turbulent mixing explained the dynamics of the measured mixing-ratios qualitatively. However, quantitative understanding will require longterm emission measurements of the OVOCs and the use of comprehensive chemistry models. Keywords: Hydrocarbons, VOC, fluxes, volume mixing-ratio, boreal forest
Resumo:
There is a growing interest in management of MSW through micro-treatment of organic fraction of municipal solid wastes (OFMSW) in many cities of India. The OFMSW fraction is high (> 80%) in many pockets within South Indian cities like Bangalore, Chikkamagalur, etc. and is largely represented by vegetable, fruit, packing and garden wastes. Among these, the last three have shown problems for easy decomposition. Fruit wastes are characterized by a large pectin supported fraction that decomposes quickly to organic acids (becomes pulpy) that eventually slow down anaerobic and aerobic decomposition processes. Paper fraction (newsprint and photocopying paper) as well as paddy straw (packing), bagasse (from cane juice stalls) and tree leaf litter (typical garden waste and street sweepings) are found in reasonably large proportions in MSW. These decompose slowly due to poor nutrients or physical state. We have examined the suitability of these substrates for micro-composting in plastic bins by tracking decomposition pattern and physical changes. It was found that fruit wastes decompose rapidly to produce organic acids and large leachate fraction such that it may need to be mixed with leachate absorbing materials (dry wastes) for good composting. Leaf litter, paddy straw and bagasse decompose to the tune of 90, 68 and 60% VS and are suitable for composting micro-treatment. Paper fractions even when augmented with 10% leaf compost failed to show appreciable decomposition in 50 days. All these feedstocks were found to have good biological methane potential (BMP) and showed promise for conversion to biogas under a mixed feed operation. Suitability of this approach was verified by operating a plug-flow type anaerobic digester where only leaf litter gathered nearby (as street sweepings) was used as feedstock. Here only a third of the BMP was realized at this scale (0.18 m(3) biogas/kg VS 0.55 m(3)/kg in BMP). We conclude that anaerobic digestion in plug-flow like digesters appear a more suitable micro-treatment option (2-10 kg VS/day) because in addition to compost it also produces biogas for domestic use nearby.
Resumo:
Close to the Mott transition, lattice degrees of freedom react to the softening of electron degrees of freedom. This results in a change of lattice spacing, a diverging compressibility, and a critical anomaly of the sound velocity. These effects are investigated within a simple model, in the framework of dynamical mean-field theory. The results compare favorably to recent experiments on the layered organic-conductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl. We predict that effects of a similar magnitude are expected for V2O3, despite the much larger value of the elastic modulus of this material.
Resumo:
A new equation for predicting the thermal conductivities of organic liquids using dimension-less analysis is given. The equation (Equation Presented) correlates 51 different liquids tested within 11% average error and 17% standard deviation. A comparison of the proposed equation with the available correlations and its application to some industrially important liquids show that this equation can be safely used to calculate the thermal conductivities at 20°C. and 1 atm. pressure for organic liquids of known molecular weight. Cp and ΔHv - the only two parameters for which experimental values must be known for making use of this equation - can be calculated using other well known correlations. The proposed equation is not applicable to inorganic liquids.
Resumo:
1. The common organic acids inhibited leaf phosphatase activity, This effect is mostly due to the hydroxyl groups in them. 2. The less common organic acids, which have only carboxyl groups, did not show any marked inhibitory action on phosphatase activity. 3. The less common organic acids eluted the leaf phosphatase after adsorption on aluminacγ gel to a greater extent than the more common organic acids. 4. The second elution of the purified enzyme from the aluminacγ gel was not possible with the organic acids as it was adsorbed on the gel.
Resumo:
The addition reactions of alcohols, ROH (R = CH3, C2H5 n-C3H7, i-C3H7 and t-C4H9), to p-bromophenylisothiocyanate show that the rates decrease in the order, CH3OH> C2H5OH> n-C3H7OH> i-C3H7OH> t-C4H9OH, although the basicities of the alcohols vary in the reverse order. The results indicate the greater importance of steric factors as compared with polar factors. Evidence is also presented for the formation of a complex between the isothiocyanate and the alcohol in the first stage of the addition reaction. In the addition of aniline to substituted phenylisothiocyanates the rate data give a satisfactory linear correlation with Hammett σ constants and the results clearly show that electron-withdrawing groups favour the addition reaction. The addition of aniline to alkyl isothiocyanates have been studied in order to find out the nature of alkyl group interaction in these derivatives. Kinetic studies on the addition of substituted anilines to phenylisothiocyanate show that the rate of reaction increases with the electron-donating ability of the substituents on the aniline as also the basicity of the aniline.