957 resultados para On-Chip Balun


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les facteurs de transcription sont des protéines spécialisées qui jouent un rôle important dans différents processus biologiques tel que la différenciation, le cycle cellulaire et la tumorigenèse. Ils régulent la transcription des gènes en se fixant sur des séquences d’ADN spécifiques (éléments cis-régulateurs). L’identification de ces éléments est une étape cruciale dans la compréhension des réseaux de régulation des gènes. Avec l’avènement des technologies de séquençage à haut débit, l’identification de tout les éléments fonctionnels dans les génomes, incluant gènes et éléments cis-régulateurs a connu une avancée considérable. Alors qu’on est arrivé à estimer le nombre de gènes chez différentes espèces, l’information sur les éléments qui contrôlent et orchestrent la régulation de ces gènes est encore mal définie. Grace aux techniques de ChIP-chip et de ChIP-séquençage il est possible d’identifier toutes les régions du génome qui sont liées par un facteur de transcription d’intérêt. Plusieurs approches computationnelles ont été développées pour prédire les sites fixés par les facteurs de transcription. Ces approches sont classées en deux catégories principales: les algorithmes énumératifs et probabilistes. Toutefois, plusieurs études ont montré que ces approches génèrent des taux élevés de faux négatifs et de faux positifs ce qui rend difficile l’interprétation des résultats et par conséquent leur validation expérimentale. Dans cette thèse, nous avons ciblé deux objectifs. Le premier objectif a été de développer une nouvelle approche pour la découverte des sites de fixation des facteurs de transcription à l’ADN (SAMD-ChIP) adaptée aux données de ChIP-chip et de ChIP-séquençage. Notre approche implémente un algorithme hybride qui combine les deux stratégies énumérative et probabiliste, afin d’exploiter les performances de chacune d’entre elles. Notre approche a montré ses performances, comparée aux outils de découvertes de motifs existants sur des jeux de données simulées et des jeux de données de ChIP-chip et de ChIP-séquençage. SAMD-ChIP présente aussi l’avantage d’exploiter les propriétés de distributions des sites liés par les facteurs de transcription autour du centre des régions liées afin de limiter la prédiction aux motifs qui sont enrichis dans une fenêtre de longueur fixe autour du centre de ces régions. Les facteurs de transcription agissent rarement seuls. Ils forment souvent des complexes pour interagir avec l’ADN pour réguler leurs gènes cibles. Ces interactions impliquent des facteurs de transcription dont les sites de fixation à l’ADN sont localisés proches les uns des autres ou bien médier par des boucles de chromatine. Notre deuxième objectif a été d’exploiter la proximité spatiale des sites liés par les facteurs de transcription dans les régions de ChIP-chip et de ChIP-séquençage pour développer une approche pour la prédiction des motifs composites (motifs composés par deux sites et séparés par un espacement de taille fixe). Nous avons testé ce module pour prédire la co-localisation entre les deux demi-sites ERE qui forment le site ERE, lié par le récepteur des œstrogènes ERα. Ce module a été incorporé à notre outil de découverte de motifs SAMD-ChIP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canadian and U.S. federal wildlife agencies completed four decadal surveys, spanning the years 1977 to 2009, to census colonial waterbirds breeding on the Great Lakes and adjoining bodies of water. In this paper, we reports abundance, distribution, and general population trends of three species: Black-crowned Night-Heron (Nycticorax nycticorax), Great Egret (Ardea alba), and Great Blue Heron (Ardea herodias). Estimates of nest numbers ranged from approximately 4000-6100 for the Black-crowned Night-Heron, 250-1900 for the Great Egret, and 3800-6400 for the Great Blue Heron. Average annual rates of change in nest numbers between the first (1977) and fourth (2008) census were −1% for the Black-crowned Night-Heron, +23% for the Great Egret, and −0.27% for the Great Blue Heron. Across the 30-year census, Black-crowned Night-Heron estimates decreased in U.S. (−57%) but increased (+18%) in Canadian waters, Great Egret nests increased 1381% in Canadian waters with a smaller, but still substantial increase in the number of nests at U.S. colonies (+613%), and Great Blue Heron numbers increased 148% in Canadian waters and 713% in U.S. waters. Although a single factor cannot be clearly linked to changes observed in each species’ distribution, hydrological variation, habitat succession, nest competition with Double-crested Cormorants (Phalacrocorax auritus), and land use changes likely all contributed. Management activities should support both breeding and foraging conditions including restoration of early successional habitats and anticipate continued northward expansions in the distributions of these waterbirds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the convergence behavior of the least mean square (LMS) filter when used in an adaptive code division multiple access (CDMA) detector consisting of a tapped delay line with adjustable tap weights. The sampling rate may be equal to or higher than the chip rate, and these correspond to chip-spaced (CS) and fractionally spaced (FS) detection, respectively. It is shown that CS and FS detectors with the same time-span exhibit identical convergence behavior if the baseband received signal is strictly bandlimited to half the chip rate. Even in the practical case when this condition is not met, deviations from this observation are imperceptible unless the initial tap-weight vector gives an extremely large mean squared error (MSE). This phenomenon is carefully explained with reference to the eigenvalues of the correlation matrix when the input signal is not perfectly bandlimited. The inadequacy of the eigenvalue spread of the tap-input correlation matrix as an indicator of the transient behavior and the influence of the initial tap weight vector on convergence speed are highlighted. Specifically, a initialization within the signal subspace or to the origin leads to very much faster convergence compared with initialization in the a noise subspace.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene Chips are finding extensive use in animal and plant science. Generally microarrays are of two kind, cDNA or oligonucleotide. cDNA microarrays were developed at Stanford University, whereas oligonucleotide were developed by Affymetrix. The construction of cDNA or oligonucleotide on a glass slide helps to compare the gene expression level of treated and control samples by labeling mRNA with green (Cy3) and red (Cy5) dyes. The hybridized gene chip emit fluorescence whose intensity and colour can be measured. RNA labeling can be done directly or indirectly. Indirect method involves amino allyle modified dUTP instead of pre-labelled nucleotide. Hybridization of gene chip generally occurs in a minimum volume possible and to ensure the hetroduplex formation, a ten fold more DNA is spotted on slide than in the solutions. A confocal or semi confocal laser technologies coupled with CCD camera are used for image acquisition. For standardization, house keeping genes are used or cDNA are spotted in gene chip that are not present in treated or control samples. Moreover, statistical analysis (image analysis) and cluster analysis softwares have been developed by Stanford University. The gene-chip technology has many applications like expression analysis, gene expression signatures (molecular phenotypes) and promoter regulatory element co-expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The layer-by-layer deposition of polymers onto surfaces allows the fabrication of multilayered materials for a wide range of applications, from drug delivery to biosensors. This work describes the analysis of complex formation between poly(acrylic acid) and methylcellulose in aqueous solutions using Biacore, a surface plasmon resonance analytical technique, traditionally used to examine biological interactions. This technique characterized the layer-by-layer deposition of these polymers on the surface of a Biacore sensor chip. The results were subsequently used to optimize the experimental conditions for sequential layer deposition on glass slides. The role of the solution pH and poly(acrylic acid) molecular weight on the formation of interpolymer multilayered coatings was researched, and showed that the optimal deposition of the polymer complexes was achieved at pHs ≤2.5 with a poly(acrylic acid) molecular weight of 450 kDa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing amount of available expressed gene sequence data makes whole-transcriptome analysis of certain crop species possible. Potato currently has the second largest number of publicly available expressed sequence tag (EST) sequences among the Solanaceae. Most of these ESTs, plus other proprietary sequences, were combined and used to generate a unigene assembly. The set of 246,182 sequences produced 46,345 unigenes, which were used to design a 44K 60-mer oligo array (Potato Oligo Chip Initiative: POCI). In this study, we attempt to identify genes controlling and driving the process of tuber initiation and growth by implementing large-scale transcriptional changes using the newly developed POCI array. Major gene expression profiles could be identified exhibiting differential expression at key developmental stages. These profiles were associated with functional roles in cell division and growth. A subset of genes involved in the regulation of the cell cycle, based on their Gene Ontology classification, exhibit a clear transient upregulation at tuber onset indicating increased cell division during these stages. The POCI array allows the study of potato gene expression on a much broader level than previously possible and will greatly enhance analysis of transcriptional control mechanisms in a wide range of potato research areas. POCI sequence and annotation data are publicly available through the POCI database (http://pgrc.ipk-gatersleben.de/poci).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is estimated that the adult human brain contains 100 billion neurons with 5–10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO2 substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a simple technique for the patterning of glia and neurons. The integration of neuronal patterning to Multi-Electrode Arrays (MEAs), planar patch clamp and silicon based ‘lab on a chip’ technologies necessitates the development of a microfabrication-compatible method, which will be reliable and easy to implement. In this study a highly consistent, straightforward and cost effective cell patterning scheme has been developed. It is based on two common ingredients: the polymer parylene-C and horse serum. Parylene-C is deposited and photo-lithographically patterned on silicon oxide (SiO2) surfaces. Subsequently, the patterns are activated via immersion in horse serum. Compared to non-activated controls, cells on the treated samples exhibited a significantly higher conformity to underlying parylene stripes. The immersion time of the patterns was reduced from 24 to 3 h without compromising the technique. X-ray photoelectron spectroscopy (XPS) analysis of parylene and SiO2 surfaces before and after immersion in horse serum and gel based eluant analysis suggests that the quantity and conformation of proteins on the parylene and SiO2 substrates might be responsible for inducing glial and neuronal patterning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In our previous work we developed a successful protocol to pattern the human hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. This communication, reports how we have successfully managed to pattern the supportive cell to the neuron, the hNT astrocyte, on such substrates. Here we disseminate the nanofabrication, cell differentiation and cell culturing protocols necessary to successfully pattern the first human hNT astrocytes to single cell resolution on parylene-C/SiO2 substrates. This is performed for varying parylene strip widths providing excellent contrast to the SiO2 substrate and elegant single cell isolation at 10μm strip widths. The breakthrough in patterning human cells on a silicon chip has widespread implications and is valuable as a platform technology as it enables a detailed study of the human brain at the cellular and network level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, we describe the microfabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner (PT) electrophoresis microchips using toner masks. Planar electrodes were fabricated by three simple steps: (i) drawing and laser-printing the electrode geometry on polyester films, (ii) sputtering deposition onto substrates, and (iii) removal of toner layer by a lift-off process. The polyester film with anchored electrodes was integrated to PT electrophoresis microchannels by lamination at 120 degrees C in less than 1 min. The electrodes were designed in an antiparallel configuration with 750 mu m width and 750 gm gap between them. The best results were recorded with a frequency of 400 kHz and 10 V-PP using a sinusoidal wave. The analytical performance of the proposed microchip was evaluated by electrophoretic separation of potassium, sodium and lithium in 150 mu m wide x 6 mu m deep microchannels. Under an electric field of 250 V/cm the analytes were successfully separated in less than 90 s with efficiencies ranging from 7000 to 13 000 plates. The detection limits (S/N = 3) found for K+, Na+, and Li+ were 3.1, 4.3, and 7.2 mu mol/L, respectively. Besides the low-cost and instrumental simplicity, the integrated PT chip eliminates the problem of manual alignment and gluing of the electrodes, permitting more robustness and better reproducibility, therefore, more suitable for mass production of electrophoresis microchips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of applications based on embedded systems grows significantly every year, even with the fact that embedded systems have restrictions, and simple processing units, the performance of these has improved every day. However the complexity of applications also increase, a better performance will always be necessary. So even such advances, there are cases, which an embedded system with a single unit of processing is not sufficient to achieve the information processing in real time. To improve the performance of these systems, an implementation with parallel processing can be used in more complex applications that require high performance. The idea is to move beyond applications that already use embedded systems, exploring the use of a set of units processing working together to implement an intelligent algorithm. The number of existing works in the areas of parallel processing, systems intelligent and embedded systems is wide. However works that link these three areas to solve any problem are reduced. In this context, this work aimed to use tools available for FPGA architectures, to develop a platform with multiple processors to use in pattern classification with artificial neural networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work measured the effect of milling parameters on the surface integrity of low-carbon alloy steel. The Variance Analysis showed that only depth of cut did not influence on the workpiece roughness and the Pearson's Coefficient indicated that cutting speed was more influent than tool feed. All cutting parameters introduced tensile residual stress in workpiece surface. The chip formation mechanism depended specially on cutting speed and influenced on the roughness and residual stress of workpiece.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction of a flow-through cell incorporating an array of gold microelectrodes is described and its application to flow injection analysis with amperometric detection is presented, Simple modification of almost any conventional integrated circuit chip, used as an inexpensive source of pre-assembled gold micro-wires, leads to the rapid and successful preparation of arrays of 8-48 elements, the polymeric encapsulation material from the top face of the chip is removed by abrasion until the gold micro-mires (used to interconnect the silicon circuit to the external contact pins of the chip) are disrupted and their transversal (elliptical) sections become exposed. Once polished, the flat and smooth top surface of the gold microelectrode-array chip (MEAC) is provided with a spacer and fitted under pressure against an acrylic block with the reference and auxiliary electrodes, to form the electrochemical (thin-layer) flow cell, while the contact pins are plugged into a standard IC socket, This design ensures autonomous electric contact with each electrode and allows fast dismantling for polishing or substitution, the performance of flow cells with MEACs was investigated utilizing the technique of reverse pulse amperometry without oxygen removal, A method was established for the determination of the copper concentration in sugar cane spirit, regulated by law for beverages, Samples from industrial producers and small-scale (alembic) brewers were compared, With a 24 MEAC, a detection limit of 30 mu g I-l of copper (4.7 x 10(-7) mol l(-1) of Cu-II for 100 mu l injections) was calculated, Routine operation was established at a frequency of 60-90 determinations per hour, Intercomparison with atomic absorption spectrometric determinations resulted in excellent agreement.