964 resultados para Observation (Scientific method)
Resumo:
The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.
Resumo:
A chaotic encryption algorithm is proposed based on the "Life-like" cellular automata (CA), which acts as a pseudo-random generator (PRNG). The paper main focus is to use chaos theory to cryptography. Thus, CA was explored to look for this "chaos" property. This way, the manuscript is more concerning on tests like: Lyapunov exponent, Entropy and Hamming distance to measure the chaos in CA, as well as statistic analysis like DIEHARD and ENT suites. Our results achieved higher randomness quality than others ciphers in literature. These results reinforce the supposition of a strong relationship between chaos and the randomness quality. Thus, the "chaos" property of CA is a good reason to be employed in cryptography, furthermore, for its simplicity, low cost of implementation and respectable encryption power. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background This article aims to discuss the incorporation of traditional time in the construction of a management scenario for pink shrimp in the Patos Lagoon estuary (RS), Brazil. To meet this objective, two procedures have been adopted; one at a conceptual level and another at a methodological level. At the conceptual level, the concept of traditional time as a form of traditional ecological knowledge (TEK) was adopted. Method At the methodological level, we conduct a wide literature review of the scientific knowledge (SK) that guides recommendations for pink shrimp management by restricting the fishing season in the Patos Lagoon estuary; in addition, we review the ethno-scientific literature which describes traditional calendars as a management base for artisanal fishers in the Patos Lagoon estuary. Results Results demonstrate that TEK and SK describe similar estuarine biological processes, but are incommensurable at a resource management level. On the other hand, the construction of a “management scenario” for pink shrimp is possible through the development of “criteria for hierarchies of validity” which arise from a productive dialog between SK and TEK. Conclusions The commensurable and the incommensurable levels reveal different basis of time-space perceptions between traditional ecological knowledge and scientific knowledge. Despite incommensurability at the management level, it is possible to establish guidelines for the construction of “management scenarios” and to support a co-management process.
Resumo:
Flüchtige organische Bestandteile (engl.: VOC) sind in der Atmosphäre in Spuren vorhanden, spielen aber trotzdem eine wichtige Rolle in der Luftchemie: sie beeinflussen das Ozon der Troposphäre, städtischen Smog, Oxidationskapazität und haben direkte und indirekte Auswirkungen auf die globale Klimaveränderung. Eine wichtige Klasse der VOC sind die Nicht-Methan-Kohlenwasserstoffe (engl.: NMHC), die überwiegend von anthropogenen Quellen kommen. Aus diesem Grund ist für Luftchemiker ein Messinstrument nötig, das die VOC, die NMHC eingeschlossen, mit einer höheren Zeitauflösung misst, besonders für Echtzeitmessungen an Bord eines Forschungsflugzeuges. Dafür wurde das System zur schnellen Beobachtung von organischen Spuren (engl.: FOTOS) entworfen, gebaut für den Einsatz in einem neuen Wissenschaftlichen Flugzeug, das in großen Höhen und über weite Strecken fliegt, genannt HALO. In der Folge wurde FOTOS in zwei Messkampagnen am Boden getestet. FOTOS wurde entworfen und gebaut mit einem speziell angefertigten, automatisierten, kryogenen Probensystem mit drei Fallen und einem angepassten, erworbenen schnellen GC-MS. Ziel dieses Aufbaus war es, die Vielseitigkeit zu vergrößern und das Störungspotential zu verringern, deshalb wurden keine chemischen Trocknungsmittel oder adsorbierenden Stoffe verwendet. FOTOS erreichte eine Probenfrequenz von 5.5 Minuten, während es mindestens 13 verschiedene C2- bis C5-NMHC maß. Die Drei-Sigma-Detektionsgrenze für n- und iso-Pentan wurde als 2.6 und 2.0 pptv ermittelt, in dieser Reihenfolge. Labortests bestätigten, dass FOTOS ein vielseitiges, robustes, hochautomatisiertes, präzises, genaues, empfindliches Instrument ist, geeignet für Echtzeitmessungen von VOC in Probenfrequenzen, die angemessen sind für ein Forschungsflugzeug wie HALO. Um die Leistung von FOTOS zu bestätigen, wurde vom 26. Januar bis 4. Februar 2010 ein Zwischenvergleich gemacht mit dem GC-FID-System am Meteorologischen Observatorium Hohenpeißenberg, einer WMO-GAW-globalen Station. Dreizehn verschiedene NMHC wurden innerhalb des Rahmens der GWA Data Quality Objectives (DQO) analysiert und verglichen. Mehr als 80% der Messungen von sechs C3- bis C5-NMHC erfüllten diese DQO. Diese erste Messkampagne im Feld hob die Robustheit und Messgenauigkeit von FOTOS hervor, zusätzlich zu dem Vorteil der höheren Probenfrequenz, sogar in einer Messung am Boden. Um die Möglichkeiten dieses Instrumentes im Feld zu zeigen, maß FOTOS ausgewählte leichte NMHC während einer Messkampagne im Borealen Waldgebiet, HUMPPA-COPEC 2010. Vom 12. Juli bis zum 12. August 2010 beteiligte sich eine internationale Gruppe von Instituten und Instrumenten an Messungen physikalischer und chemischer Größen der Gas- und Partikelphasen der Luft über dem Borealen Wald an der SMEAR II-Station nahe Hyyttiälä, Finnland. Es wurden mehrere Hauptpunkte von Interesse im Mischungsverhältnis der Alkane und im Isomerenverhätnis von Pentan identifiziert, insbesondere sehr unterschiedliche Perioden niedriger und hoher Variabilität, drei Rauchschwaden von Biomassen-Verbrennung von russischen Waldbränden und zwei Tage mit extrem sauberer Luft aus der Polarregion. Vergleiche der NMHC mit anderen anthropogenen Indikatoren zeigten mehrere Quellen anthropogener Einflüsse am Ort auf und erlaubten eine Unterscheidung zwischen lokalen und weiter entfernten Quellen. Auf einen minimalen natürlichen Beitrag zum 24h-Kreislauf von NOx wurde geschlussfolgert aus der Korrelation von NOx mit Alkanen. Altersschätzungen der Luftmassen durch das Isomerenverhältnis von Pentan wurden erschwert durch sich verändernde Verhältnisse der Quellen und durch Besonderheiten der Photochemie während des Sommers im hohen Norden. Diese Messungen zeigten den Wert des Messens leichter NMHC, selbst in abgelegenen Regionen, als einen zusätzlichen spezifischen Marker von anthropogenem Einfluss.
Resumo:
Groundwater represents one of the most important resources of the world and it is essential to prevent its pollution and to consider remediation intervention in case of contamination. According to the scientific community the characterization and the management of the contaminated sites have to be performed in terms of contaminant fluxes and considering their spatial and temporal evolution. One of the most suitable approach to determine the spatial distribution of pollutant and to quantify contaminant fluxes in groundwater is using control panels. The determination of contaminant mass flux, requires measurement of contaminant concentration in the moving phase (water) and velocity/flux of the groundwater. In this Master Thesis a new solute flux mass measurement approach, based on an integrated control panel type methodology combined with the Finite Volume Point Dilution Method (FVPDM), for the monitoring of transient groundwater fluxes, is proposed. Moreover a new adsorption passive sampler, which allow to capture the variation of solute concentration with time, is designed. The present work contributes to the development of this approach on three key points. First, the ability of the FVPDM to monitor transient groundwater fluxes was verified during a step drawdown test at the experimental site of Hermalle Sous Argentau (Belgium). The results showed that this method can be used, with optimal results, to follow transient groundwater fluxes. Moreover, it resulted that performing FVPDM, in several piezometers, during a pumping test allows to determine the different flow rates and flow regimes that can occurs in the various parts of an aquifer. The second field test aiming to determine the representativity of a control panel for measuring mass flus in groundwater underlined that wrong evaluations of Darcy fluxes and discharge surfaces can determine an incorrect estimation of mass fluxes and that this technique has to be used with precaution. Thus, a detailed geological and hydrogeological characterization must be conducted, before applying this technique. Finally, the third outcome of this work concerned laboratory experiments. The test conducted on several type of adsorption material (Oasis HLB cartridge, TDS-ORGANOSORB 10 and TDS-ORGANOSORB 10-AA), in order to determine the optimum medium to dimension the passive sampler, highlighted the necessity to find a material with a reversible adsorption tendency to completely satisfy the request of the new passive sampling technique.
Resumo:
High arterial partial oxygen pressure (Pao(2)) oscillations within the respiratory cycle were described recently in experimental acute lung injury. This phenomenon has been related to cyclic recruitment of atelectasis and varying pulmonary shunt fractions. Noninvasive detection of Spo(2) (oxygen saturation measured by pulse oximetry) as an indicator of cyclic collapse of atelectasis, instead of recording Pao(2) oscillations, could be of clinical interest in critical care. Spo(2) oscillations were recorded continuously in three different cases of lung damage to demonstrate the technical feasibility of this approach. To deduce Pao(2) from Spo(2), a mathematical model of the hemoglobin dissociation curve including left and right shifts was derived from the literature and adapted to the dynamic changes of oxygenation. Calculated Pao(2) amplitudes (derived from Spo(2) measurements) were compared to simultaneously measured fast changes of Pao(2), using a current standard method (fluorescence quenching of ruthenium). Peripheral hemoglobin saturation was capable to capture changes of Spo(2) within each respiratory cycle. For the first time, Spo(2) oscillations due to cyclic recruitment of atelectasis within a respiratory cycle were determined by photoplethysmography, a technology that can be readily applied noninvasively in clinical routine. A mathematic model to calculate the respective Pao(2) changes was developed and its applicability tested.
Resumo:
Earth observations (EO) represent a growing and valuable resource for many scientific, research and practical applications carried out by users around the world. Access to EO data for some applications or activities, like climate change research or emergency response activities, becomes indispensable for their success. However, often EO data or products made of them are (or are claimed to be) subject to intellectual property law protection and are licensed under specific conditions regarding access and use. Restrictive conditions on data use can be prohibitive for further work with the data. Global Earth Observation System of Systems (GEOSS) is an initiative led by the Group on Earth Observations (GEO) with the aim to provide coordinated, comprehensive, and sustained EO and information for making informed decisions in various areas beneficial to societies, their functioning and development. It seeks to share data with users world-wide with the fewest possible restrictions on their use by implementing GEOSS Data Sharing Principles adopted by GEO. The Principles proclaim full and open exchange of data shared within GEOSS, while recognising relevant international instruments and national policies and legislation through which restrictions on the use of data may be imposed.The paper focuses on the issue of the legal interoperability of data that are shared with varying restrictions on use with the aim to explore the options of making data interoperable. The main question it addresses is whether the public domain or its equivalents represent the best mechanism to ensure legal interoperability of data. To this end, the paper analyses legal protection regimes and their norms applicable to EO data. Based on the findings, it highlights the existing public law statutory, regulatory, and policy approaches, as well as private law instruments, such as waivers, licenses and contracts, that may be used to place the datasets in the public domain, or otherwise make them publicly available for use and re-use without restrictions. It uses GEOSS and the particular characteristics of it as a system to identify the ways to reconcile the vast possibilities it provides through sharing of data from various sources and jurisdictions on the one hand, and the restrictions on the use of the shared resources on the other. On a more general level the paper seeks to draw attention to the obstacles and potential regulatory solutions for sharing factual or research data for the purposes that go beyond research and education.
Resumo:
Upper-air observations are a fundamental data source for global atmospheric data products, but uncertainties, particularly in the early years, are not well known. Most of the early observations, which have now been digitized, are prone to a large variety of undocumented uncertainties (errors) that need to be quantified, e.g., for their assimilation in reanalysis projects. We apply a novel approach to estimate errors in upper-air temperature, geopotential height, and wind observations from the Comprehensive Historical Upper-Air Network for the time period from 1923 to 1966. We distinguish between random errors, biases, and a term that quantifies the representativity of the observations. The method is based on a comparison of neighboring observations and is hence independent of metadata, making it applicable to a wide scope of observational data sets. The estimated mean random errors for all observations within the study period are 1.5 K for air temperature, 1.3 hPa for pressure, 3.0 ms−1for wind speed, and 21.4° for wind direction. The estimates are compared to results of previous studies and analyzed with respect to their spatial and temporal variability.
Resumo:
A new technique to porewater extraction from claystone employs advective displacement of the in situ porewater by traced artificial porewater. Monitoring of tracer breakthrough yields species-specific transport properties. Results for Opalinus Clay from the Mont Terri Research Laboratory indicate that the chemical disturbances due to the method are minimal, and the observed significant differences in transport properties for Br– and 2H are in agreement with existing data. Sampling times are 2–4 months, and observation of tracer breakthrough takes 12–24 months at hydraulic conductivity of ∼10-13 m/s.
Resumo:
INTRODUCTION Post-mortem cardiac MR exams present with different contraction appearances of the left ventricle in cardiac short axis images. It was hypothesized that the grade of post-mortem contraction may be related to the post-mortem interval (PMI) or cause of death and a phenomenon caused by internal rigor mortis that may give further insights in the circumstances of death. METHOD AND MATERIALS The cardiac contraction grade was investigated in 71 post-mortem cardiac MR exams (mean age at death 52y, range 12-89y; 48 males, 23 females). In cardiac short axis images the left ventricular lumen volume as well as the left ventricular myocardial volume were assessed by manual segmentation. The quotient of both (LVQ) represents the grade of myocardial contraction. LVQ was correlated to the PMI, sex, age, cardiac weight, body mass and height, cause of death and pericardial tamponade when present. In cardiac causes of death a separate correlation was investigated for acute myocardial infarction cases and arrhythmic deaths. RESULTS LVQ values ranged from 1.99 (maximum dilatation) to 42.91 (maximum contraction) with a mean of 15.13. LVQ decreased slightly with increasing PMI, however without significant correlation. Pericardial tamponade positively correlated with higher LVQ values. Variables such as sex, age, body mass and height, cardiac weight and cause of death did not correlate with LVQ values. There was no difference in LVQ values for myocardial infarction without tamponade and arrhythmic deaths. CONCLUSION Based on the observation in our investigated cases, the phenomenon of post-mortem myocardial contraction cannot be explained by the influence of the investigated variables, except for pericardial tamponade cases. Further research addressing post-mortem myocardial contraction has to focus on other, less obvious factors, which may influence the early post-mortem phase too.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
This article introduces the emic–etic debate in the scientific study of religion\s and provides a frame for the special issue’s six articles on the topic. Departing from the broader debate’s early history in the 1960s, this article contextualizes the emic–etic debate and locates its point of entry into the scientific study of religion\s in the 1980s. This article argues that in the course of the debate the insider–outsider and emic–etic complexes have become entangled. In order to facilitate an understanding of the debate, this article maintains that the emic–etic debate in the scientific study of religion\s touches upon three central dimensions (existential–political, methodologi- cal, and epistemological). In order to move toward a clearer methodological and epis- temological framework, this article furthermore proposes an iterative model that locates insider–outsider at the level of observers and emic–etic at the level of categories.
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry.
Resumo:
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.