975 resultados para ND-GDVO4 LASER
Resumo:
In order to investigate optically excited electronic transport in Er-doped SnO2, thin films are excited with the fourth harmonic of an Nd:YAG laser (266nm) at low temperature, yielding conductivity decay when the illumination is removed. Inspection of these electrical characteristics aims knowledge for electroluminescent devices operation. Based on a proposed model where trapping defects present thermally activated cross section, the capture barrier is evaluated as 140, 108, 100 and 148 meV for doped SnO2, thin films with 0.0, 0.05, 0. 10 and 4.0 at% of Er, respectively. The undoped film has vacancy levels as dominating, whereas for doped films. there are two distinct trapping centers: Er3+ substitutional at Sn lattice sites and Er3+ located at grain boundary. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the theoretical and experimental results for oxide thin film growth on titanium films previously deposited over glass substrate. Ti films of thickness 0.1 μm were heated by Nd:YAG laser pulses in air. The oxide tracks were created by moving the samples with a constant speed of 2 mm/s, under the laser action. The micro-topographic analysis of the tracks was performed by a microprofiler. The results taken along a straight line perpendicular to the track axis revealed a Gaussian profile that closely matches the laser's spatial mode profile, indicating the effectiveness of the surface temperature gradient on the film's growth process. The sample's micro-Raman spectra showed two strong bands at 447 and 612 cm -1 associated with the TiO 2 structure. This is a strong indication that thermo-oxidation reactions took place at the Ti film surface that reached an estimated temperature of 1160 K just due to the action of the first pulse. The results obtained from the numerical integration of the analytical equation which describes the oxidation rate (Wagner equation) are in agreement with the experimental data for film thickness in the high laser intensity region. This shows the partial accuracy of the one-dimensional model adopted for describing the film growth rate. © 2001 Elsevier Science B.V.
Resumo:
In this work we developed a setup to measure the speed of sound in gases using a laser ultrasonics system. The mentioned setup is an all optical system composed by a Q-switched Nd:YAG laser to generate the sound waves, and a fiber optical microphone to detect them. The Nd:YAG provided a laser pulse of approximately 420 mJ energy and 9 ns of pulse width, at the wavelength of 1064 nm. The pulsed laser beam, focused by a positive lens, was used to generate an electrical breakdown (in the gas) which, in turn, generates an sound wave that traveled through a determined distance and reached the fiber optical microphone. The resulting signal was acquired in an oscilloscope and the time difference between the optical pulse and the arrival of the sound waves was used to calculate the speed of sound, since the distance was known. The system was initially tested to measure the speed of sound in air, at room pressure and temperature and it presented results in agreement with the theory, showing to be suitable to measure the speed of sound in gases. © 2012 American Institute of Physics.
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
O objetivo desra pesquisa foi avaliar a microinfiltração através da microscopia óptica e a nanoinfiltração, através da Microscopia Eletrônica de Varredura (MRV), em cavidades classe V, preparadas por dois métodos: 1) irradiação à laser Er:UAG mais condicionamento ácido e 2) turbinas de alta-rotação. Foi observado também a influência da irradiação do laser Nd;YAG em dois sistemas de adesivo dentinários: Single Bond (3M) e Prime & Bond NT (Dentsply). As cavidades foram restauradas com a resina composta Z100 quando foi utilizado o adesivo...
Resumo:
This study evaluated the effect on micro-tensile bond strength (mu-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer's instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd: YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm(2)) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (alpha = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher mu-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in mu-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher mu-TBS when compared to the suggested manufacturer's technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.
Resumo:
The objective of this study was to evaluate the effect of surface treatment with Er:YAG and Nd:YAG lasers on resin composite bond strength to recently bleached dentin. A total of 120 bovine incisors were distributed into two groups: C- without bleaching; and B- bleached with 35% hydrogen peroxide. Each group was divided into three subgroups: N- without laser treatment; Nd- Nd:YAG laser irradiation; and Er- Er:YAG laser irradiation. The adhesive system (Adper Single Bond 2) was applied and composite build-ups were constructed with Filtek Supreme (3M/ESPE). The teeth were sectioned to obtain dentin-resin sticks (1x1mm(2)) and tested by microtensile bond testing. The bond strength values in group B, subgroup N (16.1 +/- 3.5MPa) presented no significant difference compared with group B, subgroup Er (14.7 +/- 6.1MPa). Group C, subgroup N (26.8 +/- 7.4MPa) presented no significant difference compared with group B, subgroup Nd (28.8 +/- 5.6MPa). Group C, subgroup Nd (36.1 +/- 7.9MPa) presented a significant increase in bond strength compared with the other groups. The Er:YAG laser did not influence the bond strength of bleached specimens, and the use of the Nd:YAG laser on bleached specimens was able to reverse the immediate effects of bleaching, obtaining bond strength values similar to those of the control group.
Resumo:
The aim of this study was to investigate the effects of Er:YAG and Nd:YAG lasers on the shear bond strength of composite resin to dentin. The coronal portion of 56 human molars was divided into three parts, and the dentin thickness was standardized at 2 mm. A 3-mm hole was marked in the center of each tooth with sealing tape paper. The specimens (n = 14) were then divided into four groups: (1) acid etching + Single Bond (SB) (control), (2) acid etching + SB + Nd: YAG laser irradiation (before adhesive curing), (3) thermal etching with the Er: YAG laser + SB, and (4) thermal etching with the Er: YAG laser + SB + Nd: YAG laser irradiation (before adhesive curing). A composite resin cylinder was built into the delimited area for conducting the shear bond strength test on the universal testing machine. The means +/- standard deviations were: group 1, 17.05 +/- 4.15 MPa; group 2, 16.90 +/- 3.36 MPa; group 3, 12.12 +/- 3.85 MPa; and group 4, 12.92 +/- 2.73 MPa. Groups 1 and 2 presented significantly higher values than groups 3 and 4. It was concluded that conventional etching with 37% phosphoric acid yielded significantly higher bond strength values compared to thermal etching with the Er:YAG laser. The Nd:YAG laser did not significantly influence the bond strength.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To evaluate the effect of surface treatment with Er:YAG and Nd:YAG laser on resin composite bond strength to recently bleached dentin. Material and Methods: In this study 120 bovine incisors were used and distributed into two groups: Group C: without bleaching treatment; Group B: with bleaching treatment (35% hydrogen peroxide). Each group was divided into three subgroups: Subgroup N: without laser treatment; Subgroup Nd: irradiation with Nd:YAG laser; Subgroup Er: irradiation with Er:YAG laser. Next, the adhesive system (Adper Single Bond 2) was applied and composite buildups were constructed with Z350 composite. The teeth were sectioned to obtain dentin-resin sticks (1x1mm) and analyzed by microtensile bond testing. The data were statistically analyzed by the ANOVA and Tukey tests. Results: The results showed that the bond strength values in the bleached control group (16.17 MPa) presented no significant difference in comparison with the group bleached and irradiated with Er:YAG laser (14.69 MPa). The non bleached control group (26.79 MPa) presented significant difference in bond strength when compared with the non bleached group irradiated with Er:YAG laser (22.82 MPa) and with the group treated by bleaching and irradiation with Nd:YAG laser (28,792 MPa). The group without bleaching treatment and irradiated with Nd:YAG (36.1 MPa) presented a significant increase in bond strength in comparison with the other groups. Conclusion: The use of Nd:YAG laser on bleached specimens was able of completely reversing the immediate effects of bleaching, obtaining bond strength values similar to those of the control group
Resumo:
The aim of this study was to investigate the effects of Er:YAG and Nd:YAG lasers on the shear bond strength of composite resin to dentin. The coronal portion of 56 human molars was divided into three parts, and the dentin thickness was standardized at 2 mm. A 3-mm hole was marked in the center of each tooth with sealing tape paper. The specimens (n = 14) were then divided into four groups: (1) acid etching + Single Bond (SB) (control), (2) acid etching + SB + Nd:YAG laser irradiation (before adhesive curing), (3) thermal etching with the Er:YAG laser + SB, and (4) thermal etching with the Er:YAG laser + SB + Nd:YAG laser irradiation (before adhesive curing). A composite resin cylinder was built into the delimited area for conducting the shear bond strength test on the universal testing machine. The means ± standard deviations were: group 1, 17.05 ± 4.15 MPa; group 2, 16.90 ± 3.36 MPa; group 3, 12.12 ± 3.85 MPa; and group 4, 12.92 ± 2.73 MPa. Groups 1 and 2 presented significantly higher values than groups 3 and 4. It was concluded that conventional etching with 37% phosphoric acid yielded significantly higher bond strength values compared to thermal etching with the Er:YAG laser. The Nd:YAG laser did not significantly influence the bond strength.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
BACKGROUND Lower extremity telangiectasia affects approximately 40% of women. The demand for aesthetic treatment of these veins continues to grow. Few studies have compared laser and sclerotherapy to treat leg telangiectasias. OBJECTIVE To compare the efficacy of conventional sclerotherapy and neodymium-doped yttrium aluminum garnet (Nd:YAG) laser in the treatment of leg telangiectasias. METHODS AND MATERIALS Thirty women were enrolled in the study. One leg was randomly assigned laser treatment and the other sclerotherapy with 75% glucose solution. All patients were photographed before and after treatment. The applying physician and two independent observers rated photographic improvement of the treated areas. Complications and adverse effects were noted during follow-up. Patients answered a questionnaire that addressed pain, clearing of the vessels, and satisfaction with the results. RESULTS There was a significant difference between the modes of treatment regarding pain. Twelve patients using laser and 16 using sclerotherapy considered the clearing of the vessels to be good to excellent after three sessions of both laser and scleratherapy. Mean scores after photographic assessment were 7.9 for laser and 7.0 for sclerotherapy. CONCLUSION Lower extremity telangiectases may be treated equally well using Nd:YAG 1064-nm laser or conventional sclerotherapy.
Resumo:
The aim of the present study was to determine clinical parameters for the use of Er,Cr:YSGG laser in the treatment of dentine hypersensitivity. Two antagonist areas were determined as control and experimental areas for irradiation in 90 premolar roots. Each surface was conditioned with 24% EDTA (sub-group 1) and 35% phosphoric acid (sub-group 2) and irradiated with the following settings: 1) Er:YAG, 60 mJ, 2 Hz, defocused; groups 2 to 9: irradiation with Er,Cr:YSGG laser, 20 Hz, Z6 tip, 0% of air and water: 2) Er,Cr:YSGG 0.25 W; 3) 0.5 W; 4) 0.75 W; 5) 1.0 W; 6) 1.25 W, 7) 1.50 W, 8) 2 W; 9) 2 W. After irradiation, samples were immersed in methylene blue solution and included in epoxy resin to obtain longitudinal cuts. The images were digitalized and analyzed by computer software. Although the samples irradiated with Er:YAG laser showed less microleakage, sub-group 1 showed differences between the groups, differing statistically from groups 3, 6, and 9. The results of sub-group 2 showed that the mean values of Er:YAG samples showed a negative trend, however, no differences were detected between the groups. For scanning electron microscopy analysis, dentine squares were obtained and prepared to evaluate the superficial morphology. Partial closure of dentinal tubules was observed after irradiation with Er:YAG and Er,Cr:YSGG laser in the 0.25 and 0.50 W protocols. As the energy densities rose, open dentinal tubules, carbonization and cracks were observed. It can be concluded that none of the parameters were capable of eliminating microleakage, however, clinical studies with Er:YAG and Er,Cr:YSGG lasers should be conducted with the lowest protocols in order to determine the most satisfactory setting for dentine hypersensitivity.