923 resultados para NATURAL KILLER CELLS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Células tumorais desenvolvem diversas estratégias para escapar da identificação e eliminação pelo sistema imune. Dessa forma, a investigação dos mecanismos envolvidos na comunicação celular no microambiente tumoral e na desregulação local do sistema imune é crítica para uma melhor compreensão da progressão da doença e para o desenvolvimento de alternativas terapêuticas mais eficazes. Nós aqui demonstramos que SIGIRR/IL-1R8, um importante regulador negativo de receptores de Interleucina-1 (ILRs) e receptores do tipo Toll (TLRs), apresenta expressão aumentada em uma linhagem celular epitelial mamária transformada pela superexpressão do oncogene HER2 e em tumores primários de mama, e promove o crescimento tumoral e metástase através da modulação da inflamação associada ao câncer e da atenuação da resposta imune antitumoral. Observamos que IL-1R8 tem sua expressão correlacionada com HER2 em tecidos mamários e sua alta expressão é fator de pior prognóstico em câncer de mama de baixo grau. Notavelmente, níveis aumentados de IL-1R8 foram observados especialmente nos subtipos HER2+ e Luminais de tumores de mama, e sua expressão aumentada em células epiteliais de mama transformadas por HER2 diminui a ativação da via de NF-κB e a expressão de diferentes citocinas pro-inflamatórias (IL-6, IL-8, TNF, CSF2, CSF3 e IFN-β1). Meio condicionado de células transformadas por HER2, mas não de variantes celulares com o gene IL-1R8 silenciado, induz a polarização de macrófagos para o fenótipo M2 e inibe a ativação de células NK. Em um modelo murino transgênico de tumorigênese espontânea mediada por HER2, MMTV-neu, verificamos que a deficiência de IL-1R8 (IL-1R8-/-neu) retardou o aparecimento de tumores e reduziu a incidência, a carga tumoral e a disseminação metastática. Contudo, não foram observadas diferenças significativas no crescimento tumoral quando animais IL-1R8-/-neu receberam medula óssea de animais IL-1R8+/+, confirmando um papel importante da expressão de IL-1R8 em células não hematopoiéticas na tumorigênese da mama. Tumores IL-1R8+/+neu apresentaram maiores níveis de citocinas pró-inflamatórias como IL-1β e VEGF, e menores níveis da citocina imunomodulatória IFN-γ. Além disso, tumores que expressavam IL-1R8 apresentaram menor infiltrado de células NK maduras, células dendríticas (DCs) e linfócitos T-CD8+ e um maior infiltrado de macrófagos M2 e linfócitos T-CD4+. Coletivamente, esses resultados indicam que a expressão de IL-1R8 em tumores de mama pode representar um novo mecanismo de escape da resposta imune e suportam IL-1R8 como potencial alvo terapêutico.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Candida albicans is the most frequent etiologic agent that causes opportunistic fungal infections called candidiasis, a disease whose systemic manifestation could prove fatal and whose incidence is increasing as a result of an expanding immunocompromised population. Here we review the role of interferon-gamma (IFN-γ) in host protection against invasive candidiasis. This cytokine plays an essential role in both the innate and adaptive arms of the immune response to candidiasis. We focus on recent progress on host-pathogen interactions leading to the production of IFN-γ by host cells. IFN-γ is produced by CD4 Th1, CD8, γδ T, and natural killer (NK) cells, essentially in response to both IL-12 and/or IL-18; more recently, a subset of C. albicans-specific Th17 cells have been described to produce both IL-17 and IFN-γ. IFN-γ plays an important role in the regulation of the immune system as well as in the control of the infectious process, as it is required for optimal activation of phagocytes, collaborates in the generation of protective antibody response, and favors the development of a Th1 protective response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a lymphocyte lineage, which has diverse immune regulatory activities in many disease settings. Most previous studies have investigated the functions of this family of cells as a single entity, but more recent evidence highlights the distinct functional and phenotypic properties of NKT cell subpopulations. It is likely that the diverse functions of NKT cells are regulated and coordinated by these different NKT subsets. Little is known about how NKT subsets differ in their interactions with the host. We have undertaken the first microarray analysis comparing the gene expression profiles of activated human NKT cell subpopulations, including CD8(+) NKT cells, which have often been overlooked. We describe the significant gene expression differences among NKT cell subpopulations and some of the molecules likely to confer their distinct functional roles. Several genes not associated previously with NKT cells were shown to be expressed differentially in specific NKT cell subpopulations. Our findings provide new insights into the NKT cell family, which may direct further research toward better manipulation of NKT cells for therapeutic applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Multiple low doses of streptozotocin (MSZ) treatment successfully induced diabetes in male TO, MFI and HO lean mice. In contrast however, BALB/c mice failed to develop persistent hyperglycaemia. Single streptozotocin (SSZ) treatment also produced diabetes in TO mice. SSZ treatment however, produced severe weight loss and atrophy of the lymphoid organs. MSZ treatment on the other hand, was not cytotoxic towards lymphoid organs and, whilst there was no loss of body weight, growth rates were reduced in MSZ treated mice. 2. Following sheep red blood cell (SRBC) immunisation of MSZ-treated mice, haemagglutination titres, and numbers of antigen reactive cells and plaque forming cells were all significantly lower than control values. 3. In vitro proliferation of spleen cells in response to phytohaemagglutinin (PHA) and conconavalin A (ConA) was found to be significantly depressed in MSZ treated mice. However, T-lymphocyte responses were intact when the mice were not overtly hyperglycaemic. In contrast, however, T cell independent responses to lipopolysaccharide (LPS) were generally intact throughout the study period. 4. Cell mediated immunity, as assessed by measurements of delayed (Type IV) hypersensitivity, was also depressed in MSZ treated mice. This suppression could be reversed by insulin therapy. 5. Both natural killer cell activity and antibody dependent cell mediated cytotoxicity were found to be significantly increased in MSZ treated mice. 6. Histological examination of the pancreas showed the presence of insulitis, in MSZ treated mice, and cytotoxic effector cells against obese mice islet cells (as assessed by 51Cr release) and HIT-T15 cells (as assessed by insulin secretion) were found to be significantly increased. Furthermore, these effector cells were also found to show increased proliferation in the presence of homogenates prepared from HIT-T15 cells. Examination of the Sera from MSZ treated mice showed that islet cell surface antibodies were present.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

International audience

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antecedente: La infección por el virus sincitial respiratorio (VSR) representa una elevada morbimortalidad, y en algunos casos necesidad de manejo en unidades de cuidado intensivo pediátrico (UCIP). La respuesta inmunológica influye de manera directa en la expresión de la severidad y pronóstico de los pacientes con infección respiratoria. Metodología: Estudio de una cohorte retrospectiva de pacientes con infección respiratoria grave secundaria a VSR, sin historia de inmunodeficiencia, atendidos en la UCIP del Hospital Universitario Clínica San Rafael. Se realizó análisis descriptivoglobaly de acuerdo a la categorización de las prueba de IgG. Resultados: De 188 pacientes que ingresaron a la UCIP, 13% presentaron infección por VSR (24), con una edad promedio de 7,3 (DE=3,6) meses. Pertenecían al sexo masculino79,83%. Se encontró que 12,5% tenían un valor de IgGbajo para su edad, 58,33% tenían valores en límite inferior y el 29,17% dentro de rangos normales para su edad. En los pacientes con IgG baja, fue mayor la presentación de choque séptico que no responde a líquidos (100 vs 92 vs 86%), la mediana de días de ventilación mecánica fue mayor (8 vs 6 vs 5 respectivamente), así como la mortalidad (67 vs 7,1 vs 0%). Conclusión: Nuestra serie encontró que aquellos pacientes con niveles bajos o valores en el límite inferior de IgG sérica tuvieron mayor compromiso sistémico, mayor duración de ventilación mecánica y mayor mortalidad. Se necesitan estudios prospectivos que relaciones niveles bajos de IgG con severidad y pronostico en estos pacientes con infección grave por VSR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ankylosing spondylitis is a model immunogenetic disease with major common and rare genetic risk factors, likely environmental contributors to its pathogenesis and, to date, no treatment that has been shown to induce disease remission in long-term studies. The discovery of the association of HLA-B27 with the disease in the early 1970s triggered extensive efforts to elucidate the mechanism of this association. However, the precise role of HLA-B27 in ankylosing spondylitis pathogenesis remains unclear. In recent years, rapid progress made in the discovery of non-MHC genes involved in susceptibility to ankylosing spondylitis has combined with increasing ability to investigate the immune system to make rapid progress in unraveling the etiopathogenesis of the condition. © 2013 Future Medicine Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

实验目的:随着科技的发展,人类活动范围已经逐渐向外太空扩展,对于人类太空探索的最大威胁是太空中的各种粒子辐射。这些辐射包括太阳辐射(质子和电子)和银河辐射(质子占85%,氦离子占14%,重离子占1%)。众所周知,重离子与常规X和γ射线相比有较高的传能线密度(linear energy transfer, LET)和相对生物学效应(relative biological effectiveness, RBE),对机体组织和器官有较强的影响。放射治疗是肿瘤治疗的重要手段之一,由于肿瘤细胞的异质性,其对放、化疗的反应相差悬殊。本研究的目的是: 1评估辐射对健康机体产生的生物学风险; 2研究抗氧化剂氮乙酰半胱氨酸(NAC)对机体辐射损伤的保护作用 3不同肿瘤细胞辐射敏感性的差异。实验方法: 1 X射线或12C6+离子对小鼠进行不同剂量的全身辐射。NAC处理组小鼠在照射前1小时腹腔注射200mg/kg的NAC,对照组注射等体积的生理盐水。照射后不同时间点取样,利用流式细胞仪检测小鼠免疫细胞周期和凋亡情况,单细胞电泳检测淋巴细胞DNA损伤,MTT法(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide)检测脾脏NK(natural killer,NK)细胞活性,微核法检测淋巴细胞染色体损伤情况,小鼠体内干扰素-γ(Interferon-γ,IFN-γ)由ELISA方法得到,小鼠血清中超氧化物岐化酶(Surperoxide dismutase SOD)由分光光度法测定,并观察胸腺和脾脏指数变化。 2 不同剂量X射线和12C6+离子辐射人肺腺癌细胞H1299和A549,用细胞克隆法检测照射后细胞存活曲线,流式细胞仪检测细胞周期和凋亡,Western-blot 检测A549 细胞P53蛋白表达。 结果: 1小鼠外周血淋巴细胞、胸腺细胞和脾脏淋巴细胞周期随着X射线照射剂量的增大而被阻滞在了G0/G1期,相同剂量的12C6+离子辐射时外周血淋巴细胞周期被阻滞在S期,分次连续X射线照射时,外周血淋巴细胞周期随着累积剂量的增加被阻滞在G2/M期;细胞凋亡比例随着照射剂量的增加而增加。小鼠血清中IFN-γ水平和脾脏中NK细胞活性在重离子照射剂量为0.05Gy时有显著增加,脾脏NK细胞活性随着照射剂量的增加而减弱。 2重离子照射后,小鼠淋巴细胞DNA和染色体的损伤随辐射剂量和照射后时间的延长而加剧。脾脏NK细胞活性在照射后各个时间点减弱,血清中IFN-γ水平和SOD酶活性随着重离子照射剂量的增加而降低。预防性给予NAC,12C6+离子辐射对淋巴细胞DNA和染色体所致损伤,胸腺细胞周期和凋亡,脾脏NK细胞活性,血清中IFN-γ的水平和SOD酶的活性的损伤与盐水组比较均有显著改善。 3 X射线照射对肺腺癌H1299细胞周期和凋亡率未产生明显影响,重离子照射后随着照射剂量的增加细胞周期被阻滞在G2/M期,细胞凋亡率也呈剂量依赖性;X射线和12C6+离子照射A549细胞后,细胞周期均被阻滞在G2/M期,凋亡率剂量依赖性增加。A549细胞P53蛋白的表达水平随着重离子照射剂量的增加而增加。结论: 1重离子辐射造成细胞DNA和染色体损伤随着照射剂量的增加和照射后时间的延长而增加,比X射线辐射损伤复杂和难以修复,产生这种现象的机理为辐射导致活性氧分子簇的产生,细胞因子和与细胞氧化反应有关的酶活性的变化,同时这种损伤对胸腺细胞周期、凋亡和胸腺、脾脏指数以及机体免疫系统都有影响;低剂量重离子辐射(0.05Gy)对小鼠机体的免疫力有刺激作用,机体免疫能力随着照射剂量增加和照射后时间的推移而减弱,不同的免疫器官对辐射的敏感性也不同; 2 200mg/kg 的NAC对辐射所致小鼠免疫系统损伤有很好的保护作用; 3 肺腺癌细胞H1299比同系A549具有较强的辐射敏感性,A549细胞凋亡的增加与P53蛋白表达水平升高有关

Relevância:

80.00% 80.00%

Publicador:

Resumo:

lambda-Carrageenan is a sulfated galactan isolated from some red algae and have been reported to have many kinds of biological activities. lambda-Carrageenan from Chondrus ocellatus, an important economic alga in China and many other parts of the world, was degraded by microwave, and obtained five products that have different molecular weight: 650, 240, 140, 15, 9.3 kDa. Analytical results confirmed that microwave degradation might not change the chemical components and structure of polysaccharides under certain condition. In this study, tumor-inhibiting activities, weight of immune organ, nature killer cells activity, lymphocyte proliferation ratio and pathological slice of spleen and tumor cells from the control group and lambda-carrageenan-treated mice of transplanted S 180 and H22 tumor were investigated. The results indicated that the five lambda-carrageenan samples all showed antitumor and immunomodulation activities in different degree. Molecular weight of polysaccharides had notable effect on the activities. In addition, their antitumor and immunomodulation have some relevance and the five lambda-carrageenans probably inhibited tumor by means of activating the immunocompetence of the body. Among all the experiment results, samples with the highest activities are PC4 and PC5 whose molecular weight are 15 and 9.3 kDa. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family.