873 resultados para Multi agent systems
Resumo:
Electronic contracts are a means of representing agreed responsibilities and expected behaviour of autonomous agents acting on behalf of businesses. They can be used to regulate behaviour by providing negative consequences, penalties, where the responsibilities and expectations are not met, i.e. the contract is violated. However, long-term business relationships require some flexibility in the face of circumstances that do not conform to the assumptions of the contract, that is, mitigating circumstances. In this paper, we describe how contract parties can represent and enact policies on mitigating circumstances. As part of this, we require records of what has occurred within the system leading up to a violation: the provenance of the violation. We therefore bring together contract-based and provenance systems to solve the issue of mitigating circumstances.
Resumo:
A power describes the ability of an agent to act in some way. While this notion of power is critical in the context of organisational dynamics, and has been studied by others in this light, it must be constrained so as to be useful in any practical application. In particular, we are concerned with how power may be used by agents to govern the imposition and management of norms, and how agents may dynamically assign norms to other agents within a multi-agent system. We approach the problem by defining a syntax and semantics for powers governing the creation, deletion, or modification of norms within a system, which we refer to as normative powers. We then extend this basic model to accommodate more general powers that can modify other powers within the system, and describe how agents playing certain roles are able to apply powers, changing the system’s norms, and also the powers themselves. We examine how the powers found within a system may change as the status of norms change, and show how standard norm modification operations — such as the derogation, annulment and modification of norms— may be represented within our system.
Resumo:
Several agent platforms that implement the belief-desire-intention (BDI) architecture have been proposed. Even though most of them are implemented based on existing general purpose programming languages, e.g. Java, agents are either programmed in a new programming language or Domain-specific Language expressed in XML. As a consequence, this prevents the use of advanced features of the underlying programming language and the integration with existing libraries and frameworks, which are essential for the development of enterprise applications. Due to these limitations of BDI agent platforms, we have implemented the BDI4JADE, which is presented in this paper. It is implemented as a BDI layer on top of JADE, a well accepted agent platform.
Resumo:
The rapid growth of urban areas has a significant impact on traffic and transportation systems. New management policies and planning strategies are clearly necessary to cope with the more than ever limited capacity of existing road networks. The concept of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting to increase road capacity by means of physical modifications to the infrastructure, the premise of ITS relies on the use of advanced communication and computer technologies to handle today’s traffic and transportation facilities. Influencing users’ behaviour patterns is a challenge that has stimulated much research in the ITS field, where human factors start gaining great importance to modelling, simulating, and assessing such an innovative approach. This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and transportation systems in the light of the new performance measures brought about by ITS technologies. Agent features have good potentialities to represent those components of a system that are geographically and functionally distributed, such as most components in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is presented as an alternative to traditional models used to represent the driver behaviour within microscopic simulation allowing for an explicit representation of users’ mental states. Basic concepts of ITS and MAS are presented, as well as some application examples related to the subject. This has motivated the extension of an existing microscopic simulation framework to incorporate MAS features to enhance the representation of drivers. This way demand is generated from a population of agents as the result of their decisions on route and departure time, on a daily basis. The extended simulation model that now supports the interaction of BDI driver agents was effectively implemented, and different experiments were performed to test this approach in commuter scenarios. MAS provides a process-driven approach that fosters the easy construction of modular, robust, and scalable models, characteristics that lack in former result-driven approaches. Its abstraction premises allow for a closer association between the model and its practical implementation. Uncertainty and variability are addressed in a straightforward manner, as an easier representation of humanlike behaviours within the driver structure is provided by cognitive architectures, such as the BDI approach used in this work. This way MAS extends microscopic simulation of traffic to better address the complexity inherent in ITS technologies.
Resumo:
In systems that combine the outputs of classification methods (combination systems), such as ensembles and multi-agent systems, one of the main constraints is that the base components (classifiers or agents) should be diverse among themselves. In other words, there is clearly no accuracy gain in a system that is composed of a set of identical base components. One way of increasing diversity is through the use of feature selection or data distribution methods in combination systems. In this work, an investigation of the impact of using data distribution methods among the components of combination systems will be performed. In this investigation, different methods of data distribution will be used and an analysis of the combination systems, using several different configurations, will be performed. As a result of this analysis, it is aimed to detect which combination systems are more suitable to use feature distribution among the components
Resumo:
The World Wide Web has been consolidated over the last years as a standard platform to provide software systems in the Internet. Nowadays, a great variety of user applications are available on the Web, varying from corporate applications to the banking domain, or from electronic commerce to the governmental domain. Given the quantity of information available and the quantity of users dealing with their services, many Web systems have sought to present recommendations of use as part of their functionalities, in order to let the users to have a better usage of the services available, based on their profile, history navigation and system use. In this context, this dissertation proposes the development of an agent-based framework that offers recommendations for users of Web systems. It involves the conception, design and implementation of an object-oriented framework. The framework agents can be plugged or unplugged in a non-invasive way in existing Web applications using aspect-oriented techniques. The framework is evaluated through its instantiation to three different Web systems
Resumo:
The use of multi-agent systems for classification tasks has been proposed in order to overcome some drawbacks of multi-classifier systems and, as a consequence, to improve performance of such systems. As a result, the NeurAge system was proposed. This system is composed by several neural agents which communicate and negotiate a common result for the testing patterns. In the NeurAge system, a negotiation method is very important to the overall performance of the system since the agents need to reach and agreement about a problem when there is a conflict among the agents. This thesis presents an extensive analysis of the NeurAge System where it is used all kind of classifiers. This systems is now named ClassAge System. It is aimed to analyze the reaction of this system to some modifications in its topology and configuration
Resumo:
An agent based model for spatial electric load forecasting using a local movement approach for the spatiotemporal allocation of the new loads in the service zone is presented. The density of electrical load for each of the major consumer classes in each sub-zone is used as the current state of the agents. The spatial growth is simulated with a walking agent who starts his path in one of the activity centers of the city and goes to the limits of the city following a radial path depending on the different load levels. A series of update rules are established to simulate the S growth behavior and the complementarity between classes. The results are presented in future load density maps. The tests in a real system from a mid-size city show a high rate of success when compared with other techniques. The most important features of this methodology are the need for few data and the simplicity of the algorithm, allowing for future scalability. © 2009 IEEE.
Resumo:
A method for spatial electric load forecasting using multi-agent systems, especially suited to simulate the local effect of special loads in distribution systems is presented. The method based on multi-agent systems uses two kinds of agents: reactive and proactive. The reactive agents represent each sub-zone in the service zone, characterizing each one with their corresponding load level, represented in a real number, and their relationships with other sub-zones represented in development probabilities. The proactive agent carry the new load expected to be allocated because of the new special load, this agent distribute the new load in a propagation pattern. The results are presented with maps of future expected load levels in the service zone. The method is tested with data from a mid-size city real distribution system, simulating the effect of a load with attraction and repulsion attributes. The method presents good results and performance. © 2011 IEEE.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This paper presents a multi-agent architecture that was designed to develop processes supervision and control systems, with the main objective to automate tasks that are repetitive and stressful, and error prone when performed by humans. A set of agents were identified, based on the study of a number of applications found in the literature, that use the approach of multi-agent systems for data integration and process monitoring to faults detection and diagnosis, these agents are used as basis of the proposed multi-agent architecture. A prototype system for the analysis of abnormalities during oil wells drilling was developed.
Resumo:
Agent Communication Languages (ACLs) have been developed to provide a way for agents to communicate with each other supporting cooperation in Multi-Agent Systems. In the past few years many ACLs have been proposed for Multi-Agent Systems, such as KQML and FIPA-ACL. The goal of these languages is to support high-level, human like communication among agents, exploiting Knowledge Level features rather than symbol level ones. Adopting these ACLs, and mainly the FIPA-ACL specifications, many agent platforms and prototypes have been developed. Despite these efforts, an important issue in the research on ACLs is still open and concerns how these languages should deal (at the Knowledge Level) with possible failures of agents. Indeed, the notion of Knowledge Level cannot be straightforwardly extended to a distributed framework such as MASs, because problems concerning communication and concurrency may arise when several Knowledge Level agents interact (for example deadlock or starvation). The main contribution of this Thesis is the design and the implementation of NOWHERE, a platform to support Knowledge Level Agents on the Web. NOWHERE exploits an advanced Agent Communication Language, FT-ACL, which provides high-level fault-tolerant communication primitives and satisfies a set of well defined Knowledge Level programming requirements. NOWHERE is well integrated with current technologies, for example providing full integration for Web services. Supporting different middleware used to send messages, it can be adapted to various scenarios. In this Thesis we present the design and the implementation of the architecture, together with a discussion of the most interesting details and a comparison with other emerging agent platforms. We also present several case studies where we discuss the benefits of programming agents using the NOWHERE architecture, comparing the results with other solutions. Finally, the complete source code of the basic examples can be found in appendix.