846 resultados para Moving violations.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a fast algorithm for moving window principal component analysis (MWPCA) which will adapt a principal component model. This incorporates the concept of recursive adaptation within a moving window to (i) adapt the mean and variance of the process variables, (ii) adapt the correlation matrix, and (iii) adjust the PCA model by recomputing the decomposition. This paper shows that the new algorithm is computationally faster than conventional moving window techniques, if the window size exceeds 3 times the number of variables, and is not affected by the window size. A further contribution is the introduction of an N-step-ahead horizon into the process monitoring. This implies that the PCA model, identified N-steps earlier, is used to analyze the current observation. For monitoring complex chemical systems, this work shows that the use of the horizon improves the ability to detect slowly developing drifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that homodyne measurements can be used to demonstrate violations of Bell's inequality with Gaussian states, when the local rotations used for these types of tests are implemented using nonlinear unitary operations. We reveal that the local structure of the Gaussian state under scrutiny is crucial in the performance of the test. The effects of finite detection efficiency are thoroughly studied and shown to only mildly affect the revelation of Bell violations. We speculate that our approach may be extended to other applications such as entanglement distillation where local operations are necessary elements besides quantum entanglement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the monitoring of complex nonlinear and time-varying processes. Kernel principal component analysis (KPCA) has gained significant attention as a monitoring tool for nonlinear systems in recent years but relies on a fixed model that cannot be employed for time-varying systems. The contribution of this article is the development of a numerically efficient and memory saving moving window KPCA (MWKPCA) monitoring approach. The proposed technique incorporates an up- and downdating procedure to adapt (i) the data mean and covariance matrix in the feature space and (ii) approximates the eigenvalues and eigenvectors of the Gram matrix. The article shows that the proposed MWKPCA algorithm has a computation complexity of O(N2), whilst batch techniques, e.g. the Lanczos method, are of O(N3). Including the adaptation of the number of retained components and an l-step ahead application of the MWKPCA monitoring model, the paper finally demonstrates the utility of the proposed technique using a simulated nonlinear time-varying system and recorded data from an industrial distillation column.