825 resultados para Modeling Non-Verbal Behaviors Using Machine Learning
Resumo:
In the last decade, manufacturing companies have been facing two significant challenges. First, digitalization imposes adopting Industry 4.0 technologies and allows creating smart, connected, self-aware, and self-predictive factories. Second, the attention on sustainability imposes to evaluate and reduce the impact of the implemented solutions from economic and social points of view. In manufacturing companies, the maintenance of physical assets assumes a critical role. Increasing the reliability and the availability of production systems leads to the minimization of systems’ downtimes; In addition, the proper system functioning avoids production wastes and potentially catastrophic accidents. Digitalization and new ICT technologies have assumed a relevant role in maintenance strategies. They allow assessing the health condition of machinery at any point in time. Moreover, they allow predicting the future behavior of machinery so that maintenance interventions can be planned, and the useful life of components can be exploited until the time instant before their fault. This dissertation provides insights on Predictive Maintenance goals and tools in Industry 4.0 and proposes a novel data acquisition, processing, sharing, and storage framework that addresses typical issues machine producers and users encounter. The research elaborates on two research questions that narrow down the potential approaches to data acquisition, processing, and analysis for fault diagnostics in evolving environments. The research activity is developed according to a research framework, where the research questions are addressed by research levers that are explored according to research topics. Each topic requires a specific set of methods and approaches; however, the overarching methodological approach presented in this dissertation includes three fundamental aspects: the maximization of the quality level of input data, the use of Machine Learning methods for data analysis, and the use of case studies deriving from both controlled environments (laboratory) and real-world instances.
Resumo:
Biology is now a “Big Data Science” thanks to technological advancements allowing the characterization of the whole macromolecular content of a cell or a collection of cells. This opens interesting perspectives, but only a small portion of this data may be experimentally characterized. From this derives the demand of accurate and efficient computational tools for automatic annotation of biological molecules. This is even more true when dealing with membrane proteins, on which my research project is focused leading to the development of two machine learning-based methods: BetAware-Deep and SVMyr. BetAware-Deep is a tool for the detection and topology prediction of transmembrane beta-barrel proteins found in Gram-negative bacteria. These proteins are involved in many biological processes and primary candidates as drug targets. BetAware-Deep exploits the combination of a deep learning framework (bidirectional long short-term memory) and a probabilistic graphical model (grammatical-restrained hidden conditional random field). Moreover, it introduced a modified formulation of the hydrophobic moment, designed to include the evolutionary information. BetAware-Deep outperformed all the available methods in topology prediction and reported high scores in the detection task. Glycine myristoylation in Eukaryotes is the binding of a myristic acid on an N-terminal glycine. SVMyr is a fast method based on support vector machines designed to predict this modification in dataset of proteomic scale. It uses as input octapeptides and exploits computational scores derived from experimental examples and mean physicochemical features. SVMyr outperformed all the available methods for co-translational myristoylation prediction. In addition, it allows (as a unique feature) the prediction of post-translational myristoylation. Both the tools here described are designed having in mind best practices for the development of machine learning-based tools outlined by the bioinformatics community. Moreover, they are made available via user-friendly web servers. All this make them valuable tools for filling the gap between sequential and annotated data.
Resumo:
The rapid progression of biomedical research coupled with the explosion of scientific literature has generated an exigent need for efficient and reliable systems of knowledge extraction. This dissertation contends with this challenge through a concentrated investigation of digital health, Artificial Intelligence, and specifically Machine Learning and Natural Language Processing's (NLP) potential to expedite systematic literature reviews and refine the knowledge extraction process. The surge of COVID-19 complicated the efforts of scientists, policymakers, and medical professionals in identifying pertinent articles and assessing their scientific validity. This thesis presents a substantial solution in the form of the COKE Project, an initiative that interlaces machine reading with the rigorous protocols of Evidence-Based Medicine to streamline knowledge extraction. In the framework of the COKE (“COVID-19 Knowledge Extraction framework for next-generation discovery science”) Project, this thesis aims to underscore the capacity of machine reading to create knowledge graphs from scientific texts. The project is remarkable for its innovative use of NLP techniques such as a BERT + bi-LSTM language model. This combination is employed to detect and categorize elements within medical abstracts, thereby enhancing the systematic literature review process. The COKE project's outcomes show that NLP, when used in a judiciously structured manner, can significantly reduce the time and effort required to produce medical guidelines. These findings are particularly salient during times of medical emergency, like the COVID-19 pandemic, when quick and accurate research results are critical.
Resumo:
Il volume di tesi ha riguardato lo sviluppo di un'applicazione mobile che sfrutta la Realtà Aumentata e il Machine Learning nel contesto della biodiversità. Nello specifico si è realizzato un modello di AI che permetta la classificazione di immagini di fiori. Tale modello è stato poi integrato in Android, al fine della realizzazione di un'app che riesca a riconoscere specifiche specie di fiori, oltre a individuare gli insetti impollinatori attratti da essi e rappresentarli in Realtà Aumentata.
Resumo:
As a consequence of the diffusion of next generation sequencing techniques, metagenomics databases have become one of the most promising repositories of information about features and behavior of microorganisms. One of the subjects that can be studied from those data are bacteria populations. Next generation sequencing techniques allow to study the bacteria population within an environment by sampling genetic material directly from it, without the needing of culturing a similar population in vitro and observing its behavior. As a drawback, it is quite complex to extract information from those data and usually there is more than one way to do that; AMR is no exception. In this study we will discuss how the quantified AMR, which regards the genotype of the bacteria, can be related to the bacteria phenotype and its actual level of resistance against the specific substance. In order to have a quantitative information about bacteria genotype, we will evaluate the resistome from the read libraries, aligning them against CARD database. With those data, we will test various machine learning algorithms for predicting the bacteria phenotype. The samples that we exploit should resemble those that could be obtained from a natural context, but are actually produced by a read libraries simulation tool. In this way we are able to design the populations with bacteria of known genotype, so that we can relay on a secure ground truth for training and testing our algorithms.
Resumo:
Il morbo di Alzheimer è ancora una malattia incurabile. Negli ultimi anni l'aumento progressivo dell'aspettativa di vita ha contribuito a un'insorgenza maggiore di questa patologia, specialmente negli stati con l'età media più alta, tra cui l'Italia. La prevenzione risulta una delle poche vie con cui è possibile arginarne lo sviluppo, ed in questo testo vengono analizzate le potenzialità di alcune tecniche di Machine Learning atte alla creazione di modelli di supporto diagnostico per Alzheimer. Dopo un'opportuna introduzione al morbo di Alzheimer ed al funzionamento generale del Machine Learning, vengono presentate e approfondite due delle tecniche più promettenti per la diagnosi di patologie neurologiche, ovvero la Support Vector Machine (macchina a supporto vettoriale, SVM) e la Convolutional Neural Network (rete neurale convoluzionale, CNN), con annessi risultati, punti di forza e principali debolezze. La conclusione verterà sul possibile futuro delle intelligenze artificiali, con particolare attenzione all'ambito sanitario, e verranno discusse le principali difficoltà nelle quali queste incombono prima di essere commercializzate, insieme a plausibili soluzioni.
Resumo:
In recent times, a significant research effort has been focused on how deformable linear objects (DLOs) can be manipulated for real world applications such as assembly of wiring harnesses for the automotive and aerospace sector. This represents an open topic because of the difficulties in modelling accurately the behaviour of these objects and simulate a task involving their manipulation, considering a variety of different scenarios. These problems have led to the development of data-driven techniques in which machine learning techniques are exploited to obtain reliable solutions. However, this approach makes the solution difficult to be extended, since the learning must be replicated almost from scratch as the scenario changes. It follows that some model-based methodology must be introduced to generalize the results and reduce the training effort accordingly. The objective of this thesis is to develop a solution for the DLOs manipulation to assemble a wiring harness for the automotive sector based on adaptation of a base trajectory set by means of reinforcement learning methods. The idea is to create a trajectory planning software capable of solving the proposed task, reducing where possible the learning time, which is done in real time, but at the same time presenting suitable performance and reliability. The solution has been implemented on a collaborative 7-DOFs Panda robot at the Laboratory of Automation and Robotics of the University of Bologna. Experimental results are reported showing how the robot is capable of optimizing the manipulation of the DLOs gaining experience along the task repetition, but showing at the same time a high success rate from the very beginning of the learning phase.
Resumo:
Hand gesture recognition based on surface electromyography (sEMG) signals is a promising approach for the development of intuitive human-machine interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG signal arises from the muscles' electrical activity, and can thus be used to recognize hand gestures. The decoding from sEMG signals to actual control signals is non-trivial; typically, control systems map sEMG patterns into a set of gestures using machine learning, failing to incorporate any physiological insight. This master thesis aims at developing a bio-inspired hand gesture recognition system based on neuromuscular spike extraction rather than on simple pattern recognition. The system relies on a decomposition algorithm based on independent component analysis (ICA) that decomposes the sEMG signal into its constituent motor unit spike trains, which are then forwarded to a machine learning classifier. Since ICA does not guarantee a consistent motor unit ordering across different sessions, 3 approaches are proposed: 2 ordering criteria based on firing rate and negative entropy, and a re-calibration approach that allows the decomposition model to retain information about previous sessions. Using a multilayer perceptron (MLP), the latter approach results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom scenario. Afterwards, the decomposition and classification pipeline for inference is parallelized and profiled on the PULP platform, achieving a latency < 50 ms and an energy consumption < 1 mJ. Both the classification models tested (a support vector machine and a lightweight MLP) yielded an accuracy > 92% in a 1-subject, 5-classes (4 gestures and rest) scenario. These results prove that the proposed system is suitable for real-time execution on embedded platforms and also capable of matching the accuracy of state-of-the-art approaches, while also giving some physiological insight on the neuromuscular spikes underlying the sEMG.
Resumo:
L’obiettivo di questa tesi `e l’estensione della conoscenza di un argomento già ampliamente conosciuto e ricercato. Questo lavoro focalizza la propria attenzione su una nicchia dell’ampio mondo della virtualizzazione, del machine learning e delle tecniche di apprendimento parallelo. Nella prima parte verranno spiegati alcuni concetti teorici chiave per la virtualizzazione, ponendo una maggior attenzione verso argomenti di maggior importanza per questo lavoro. La seconda parte si propone di illustrare, in modo teorico, le tecniche usate nelle fasi di training di reti neurali. La terza parte, attraverso una parte progettuale, analizza le diverse tecniche individuate applicandole ad un ambiente containerizzato.
Resumo:
Il tema della biodiversità sta assumendo sempre più importanza negli ultimi decenni a causa delle condizioni di rischio, dovute alle attività umane, a cui l'intero mondo naturale è costantemente sottoposto. In questo contesto diventa sempre più importante l'educazione ambientale per aumentare la consapevolezza delle persone e per far si che ognuno possa adottare i dovuti accorgimenti nel rispetto e nella preservazione della natura. Questo progetto nasce con l'obiettivo di approfondire il tema della sensibilizzazione, attraverso lo sviluppo di una applicazione nativa android in grado di classificare gli insetti impollinatori e che, grazie all'integrazione di elementi di gamification, sia in grado di motivare l'utente ad approfondire le proprie conoscenze. Il progetto di tesi è suddiviso in tre capitoli: il primo descrive i concetti di biodiversità, gamification e citizen science su cui si basa l'elaborato; il secondo capitolo rappresenta la fase di progettazione per strutturare il database, le interfacce grafiche e per capire le tecnologie migliore da utilizzare; infine il terzo capitolo mostra l'implementazione completa del progetto, descrivendone nel dettaglio le funzionalità.
Resumo:
Nella sede dell’azienda ospitante Alexide, si è ravvisata la mancanza di un sistema di controllo automatico da remoto dell’intero impianto di climatizzazione HVAC (Heating, Ventilation and Air Conditioning) utilizzato, e la soluzione migliore è risultata quella di attuare un processo di trasformazione della struttura in uno smart building. Ho quindi eseguito questa procedura di trasformazione digitale progettando e sviluppando un sistema distribuito in grado di gestire una serie di dati provenienti in tempo reale da sensori ambientali. L’architettura del sistema progettato è stata sviluppata in C# su ambiente dotNET, dove sono stati collezionati i dati necessari per il funzionamento del modello di predizione. Nella fattispecie sono stati utilizzati i dati provenienti dall’HVAC, da un sensore di temperatura interna dell'edificio e dal fotovoltaico installato nella struttura. La comunicazione tra il sistema distribuito e l’entità dell’HVAC avviene mediante il canale di comunicazione ModBus, mentre per quanto riguarda i dati della temperatura interna e del fotovoltaico questi vengono collezionati da sensori che inviano le informazioni sfruttando un canale di comunicazione che utilizza il protocollo MQTT, e lo stesso viene utilizzato come principale metodo di comunicazione all’interno del sistema, appoggiandosi ad un broker di messaggistica con modello publish/subscribe. L'automatizzazione del sistema è dovuta anche all'utilizzo di un modello di predizione con lo scopo di predire in maniera quanto più accurata possibile la temperatura interna all'edificio delle ore future. Per quanto riguarda il modello di predizione da me implementato e integrato nel sistema la scelta è stata quella di ispirarmi ad un modello ideato da Google nel 2014 ovvero il Sequence to Sequence. Il modello sviluppato si struttura come un encoder-decoder che utilizza le RNN, in particolare le reti LSTM.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto
Resumo:
O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA