761 resultados para Mobile devices
Resumo:
Learn how nanotechnologies will be used to transform future wireless and Internet communications.
Resumo:
Recently,Handheld Communication Devices is developing very fast, extending in users and spreading in application fields, and has an promising future. This study investigated the acceptance of the multimodal text entry method and the behavioral characteristics when using it. Based on the general information process model of a bimodal system and the human factor studies about the multimodal map system, the present study mainly focused on the hand-speech bimodal text entry method. For acceptance, the study investigated the subjective perception of the accuracy of speech recognition by Wizard of Oz (WOz) experiment and a questionnaire. Results showed that there was a linear relationship between the speech recognition accuracy and the subjective accuracy. Furthermore, as the familiarity increasing, the difference between the acceptable accuracy and the subjective accuracy gradually decreased. In addition, the similarity of meaning between the outcome of speech recognition and the correct sentences was an important referential criterion. The second study investigated three aspects of the bimodal text entry method, including input, error recovery and modal shifts. The first experiment aimed to find the behavioral characteristics of user when doing error recovery task. Results indicated that participants preferred to correct the error by handwriting, which had no relationship with the input modality. The second experiment aimed to discover the behavioral characteristics of users when doing text entry in various types of text. Results showed that users preferred to speech input in both words and sentences conditions, which was highly consistent among individuals, while no significant difference was found between handwriting and speech input in the character condition. Participants used more direct strategy than jumping strategy to deal with mixed text, especially for the Chinese-English mixed type. The third experiment examined the cognitive load in the different modal shifts, results suggesting that there were significant differences between different shifts. Moreover, relevant little time was needed in the Shift from speech input to hand input. Based on the main findings, implications were discussed as follows: Firstly, when evaluating a speech recognition system, attention should be paid to the fact that the speech recognition accuracy was not equal to the subjective accuracy. Secondly, in order to make a speech input system more acceptable, a good method is to train and supply the feedback for the accuracy in training, which improving the familiarity and sensitivity to the system. Thirdly, both the universal and individual behavioral patterns were taken into consideration to improve the error recovery method. Fourthly, easing the study and the use of speech input, the operations of speech input should be simpler. Fifthly, more convenient text input method for non-Chinese text entry should be provided. Finally, the shifting time between hand input and speech input provides an important parameter for the design of automatic-evoked speech recognition system.
Resumo:
Malicious software (malware) have significantly increased in terms of number and effectiveness during the past years. Until 2006, such software were mostly used to disrupt network infrastructures or to show coders’ skills. Nowadays, malware constitute a very important source of economical profit, and are very difficult to detect. Thousands of novel variants are released every day, and modern obfuscation techniques are used to ensure that signature-based anti-malware systems are not able to detect such threats. This tendency has also appeared on mobile devices, with Android being the most targeted platform. To counteract this phenomenon, a lot of approaches have been developed by the scientific community that attempt to increase the resilience of anti-malware systems. Most of these approaches rely on machine learning, and have become very popular also in commercial applications. However, attackers are now knowledgeable about these systems, and have started preparing their countermeasures. This has lead to an arms race between attackers and developers. Novel systems are progressively built to tackle the attacks that get more and more sophisticated. For this reason, a necessity grows for the developers to anticipate the attackers’ moves. This means that defense systems should be built proactively, i.e., by introducing some security design principles in their development. The main goal of this work is showing that such proactive approach can be employed on a number of case studies. To do so, I adopted a global methodology that can be divided in two steps. First, understanding what are the vulnerabilities of current state-of-the-art systems (this anticipates the attacker’s moves). Then, developing novel systems that are robust to these attacks, or suggesting research guidelines with which current systems can be improved. This work presents two main case studies, concerning the detection of PDF and Android malware. The idea is showing that a proactive approach can be applied both on the X86 and mobile world. The contributions provided on this two case studies are multifolded. With respect to PDF files, I first develop novel attacks that can empirically and optimally evade current state-of-the-art detectors. Then, I propose possible solutions with which it is possible to increase the robustness of such detectors against known and novel attacks. With respect to the Android case study, I first show how current signature-based tools and academically developed systems are weak against empirical obfuscation attacks, which can be easily employed without particular knowledge of the targeted systems. Then, I examine a possible strategy to build a machine learning detector that is robust against both empirical obfuscation and optimal attacks. Finally, I will show how proactive approaches can be also employed to develop systems that are not aimed at detecting malware, such as mobile fingerprinting systems. In particular, I propose a methodology to build a powerful mobile fingerprinting system, and examine possible attacks with which users might be able to evade it, thus preserving their privacy. To provide the aforementioned contributions, I co-developed (with the cooperation of the researchers at PRALab and Ruhr-Universität Bochum) various systems: a library to perform optimal attacks against machine learning systems (AdversariaLib), a framework for automatically obfuscating Android applications, a system to the robust detection of Javascript malware inside PDF files (LuxOR), a robust machine learning system to the detection of Android malware, and a system to fingerprint mobile devices. I also contributed to develop Android PRAGuard, a dataset containing a lot of empirical obfuscation attacks against the Android platform. Finally, I entirely developed Slayer NEO, an evolution of a previous system to the detection of PDF malware. The results attained by using the aforementioned tools show that it is possible to proactively build systems that predict possible evasion attacks. This suggests that a proactive approach is crucial to build systems that provide concrete security against general and evasion attacks.
Resumo:
Wydział Nauk Geograficznych i Geologicznych
Resumo:
Forwarding in DTNs is a challenging problem. We focus on the specific issue of forwarding in an environment where mobile devices are carried by people in a restricted physical space (e.g. a conference) and contact patterns are not predictable. We show for the first time a path explosion phenomenon between most pairs of nodes. This means that, once the first path reaches the destination, the number of subsequent paths grows rapidly with time, so there usually exist many near-optimal paths. We study the path explosion phenomenon both analytically and empirically. Our results highlight the importance of unequal contact rates across nodes for understanding the performance of forwarding algorithms. We also find that a variety of well-known forwarding algorithms show surprisingly similar performance in our setting and we interpret this fact in light of the path explosion phenomenon.
Resumo:
With the rapid growth of the Internet and digital communications, the volume of sensitive electronic transactions being transferred and stored over and on insecure media has increased dramatically in recent years. The growing demand for cryptographic systems to secure this data, across a multitude of platforms, ranging from large servers to small mobile devices and smart cards, has necessitated research into low cost, flexible and secure solutions. As constraints on architectures such as area, speed and power become key factors in choosing a cryptosystem, methods for speeding up the development and evaluation process are necessary. This thesis investigates flexible hardware architectures for the main components of a cryptographic system. Dedicated hardware accelerators can provide significant performance improvements when compared to implementations on general purpose processors. Each of the designs proposed are analysed in terms of speed, area, power, energy and efficiency. Field Programmable Gate Arrays (FPGAs) are chosen as the development platform due to their fast development time and reconfigurable nature. Firstly, a reconfigurable architecture for performing elliptic curve point scalar multiplication on an FPGA is presented. Elliptic curve cryptography is one such method to secure data, offering similar security levels to traditional systems, such as RSA, but with smaller key sizes, translating into lower memory and bandwidth requirements. The architecture is implemented using different underlying algorithms and coordinates for dedicated Double-and-Add algorithms, twisted Edwards algorithms and SPA secure algorithms, and its power consumption and energy on an FPGA measured. Hardware implementation results for these new algorithms are compared against their software counterparts and the best choices for minimum area-time and area-energy circuits are then identified and examined for larger key and field sizes. Secondly, implementation methods for another component of a cryptographic system, namely hash functions, developed in the recently concluded SHA-3 hash competition are presented. Various designs from the three rounds of the NIST run competition are implemented on FPGA along with an interface to allow fair comparison of the different hash functions when operating in a standardised and constrained environment. Different methods of implementation for the designs and their subsequent performance is examined in terms of throughput, area and energy costs using various constraint metrics. Comparing many different implementation methods and algorithms is nontrivial. Another aim of this thesis is the development of generic interfaces used both to reduce implementation and test time and also to enable fair baseline comparisons of different algorithms when operating in a standardised and constrained environment. Finally, a hardware-software co-design cryptographic architecture is presented. This architecture is capable of supporting multiple types of cryptographic algorithms and is described through an application for performing public key cryptography, namely the Elliptic Curve Digital Signature Algorithm (ECDSA). This architecture makes use of the elliptic curve architecture and the hash functions described previously. These components, along with a random number generator, provide hardware acceleration for a Microblaze based cryptographic system. The trade-off in terms of performance for flexibility is discussed using dedicated software, and hardware-software co-design implementations of the elliptic curve point scalar multiplication block. Results are then presented in terms of the overall cryptographic system.
Resumo:
The advent of modern wireless technologies has seen a shift in focus towards the design and development of educational systems for deployment through mobile devices. The use of mobile phones, tablets and Personal Digital Assistants (PDAs) is steadily growing across the educational sector as a whole. Mobile learning (mLearning) systems developed for deployment on such devices hold great significance for the future of education. However, mLearning systems must be built around the particular learner’s needs based on both their motivation to learn and subsequent learning outcomes. This thesis investigates how biometric technologies, in particular accelerometer and eye-tracking technologies, could effectively be employed within the development of mobile learning systems to facilitate the needs of individual learners. The creation of personalised learning environments must enable the achievement of improved learning outcomes for users, particularly at an individual level. Therefore consideration is given to individual learning-style differences within the electronic learning (eLearning) space. The overall area of eLearning is considered and areas such as biometric technology and educational psychology are explored for the development of personalised educational systems. This thesis explains the basis of the author’s hypotheses and presents the results of several studies carried out throughout the PhD research period. These results show that both accelerometer and eye-tracking technologies can be employed as an Human Computer Interaction (HCI) method in the detection of student learning-styles to facilitate the provision of automatically adapted eLearning spaces. Finally the author provides recommendations for developers in the creation of adaptive mobile learning systems through the employment of biometric technology as a user interaction tool within mLearning applications. Further research paths are identified and a roadmap for future of research in this area is defined.
Resumo:
Along with the growing demand for cryptosystems in systems ranging from large servers to mobile devices, suitable cryptogrophic protocols for use under certain constraints are becoming more and more important. Constraints such as calculation time, area, efficiency and security, must be considered by the designer. Elliptic curves, since their introduction to public key cryptography in 1985 have challenged established public key and signature generation schemes such as RSA, offering more security per bit. Amongst Elliptic curve based systems, pairing based cryptographies are thoroughly researched and can be used in many public key protocols such as identity based schemes. For hardware implementions of pairing based protocols, all components which calculate operations over Elliptic curves can be considered. Designers of the pairing algorithms must choose calculation blocks and arrange the basic operations carefully so that the implementation can meet the constraints of time and hardware resource area. This thesis deals with different hardware architectures to accelerate the pairing based cryptosystems in the field of characteristic two. Using different top-level architectures the hardware efficiency of operations that run at different times is first considered in this thesis. Security is another important aspect of pairing based cryptography to be considered in practically Side Channel Analysis (SCA) attacks. The naively implemented hardware accelerators for pairing based cryptographies can be vulnerable when taking the physical analysis attacks into consideration. This thesis considered the weaknesses in pairing based public key cryptography and addresses the particular calculations in the systems that are insecure. In this case, countermeasures should be applied to protect the weak link of the implementation to improve and perfect the pairing based algorithms. Some important rules that the designers must obey to improve the security of the cryptosystems are proposed. According to these rules, three countermeasures that protect the pairing based cryptosystems against SCA attacks are applied. The implementations of the countermeasures are presented and their performances are investigated.
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet, exposing challenges in coping with heterogeneous device capabilities and varying network throughput. When we couple this rise in streaming with the growing number of portable devices (smart phones, tablets, laptops) we see an ever-increasing demand for high-definition videos online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide us with graceful changes in video quality, all while respecting our viewing satisfaction. In this context the use of well-known scalable media streaming techniques, commonly known as scalable coding, is an attractive solution and the focus of this thesis. In this thesis we investigate the transmission of existing scalable video models over a lossy network and determine how the variation in viewable quality is affected by packet loss. This work focuses on leveraging the benefits of scalable media, while reducing the effects of data loss on achievable video quality. The overall approach is focused on the strategic packetisation of the underlying scalable video and how to best utilise error resiliency to maximise viewable quality. In particular, we examine the manner in which scalable video is packetised for transmission over lossy networks and propose new techniques that reduce the impact of packet loss on scalable video by selectively choosing how to packetise the data and which data to transmit. We also exploit redundancy techniques, such as error resiliency, to enhance the stream quality by ensuring a smooth play-out with fewer changes in achievable video quality. The contributions of this thesis are in the creation of new segmentation and encapsulation techniques which increase the viewable quality of existing scalable models by fragmenting and re-allocating the video sub-streams based on user requirements, available bandwidth and variations in loss rates. We offer new packetisation techniques which reduce the effects of packet loss on viewable quality by leveraging the increase in the number of frames per group of pictures (GOP) and by providing equality of data in every packet transmitted per GOP. These provide novel mechanisms for packetizing and error resiliency, as well as providing new applications for existing techniques such as Interleaving and Priority Encoded Transmission. We also introduce three new scalable coding models, which offer a balance between transmission cost and the consistency of viewable quality.
Resumo:
This paper presents an investigation into dynamic self-adjustment of task deployment and other aspects of self-management, through the embedding of multiple policies. Non-dedicated loosely-coupled computing environments, such as clusters and grids are increasingly popular platforms for parallel processing. These abundant systems are highly dynamic environments in which many sources of variability affect the run-time efficiency of tasks. The dynamism is exacerbated by the incorporation of mobile devices and wireless communication. This paper proposes an adaptive strategy for the flexible run-time deployment of tasks; to continuously maintain efficiency despite the environmental variability. The strategy centres on policy-based scheduling which is informed by contextual and environmental inputs such as variance in the round-trip communication time between a client and its workers and the effective processing performance of each worker. A self-management framework has been implemented for evaluation purposes. The framework integrates several policy-controlled, adaptive services with the application code, enabling the run-time behaviour to be adapted to contextual and environmental conditions. Using this framework, an exemplar self-managing parallel application is implemented and used to investigate the extent of the benefits of the strategy
Resumo:
This paper describes a simple application for mobile devices which automatically recognizes different physical activity. This application could be used to log exercise sessions for the purpose of aiding weight management or improving sporting performance. © 2012 IEEE.
Resumo:
As ubiquitous computing becomes a reality, sensitive information is increasingly processed and transmitted by smart cards, mobile devices and various types of embedded systems. This has led to the requirement of a new class of lightweight cryptographic algorithm to ensure security in these resource constrained environments. The International Organization for Standardization (ISO) has recently standardised two low-cost block ciphers for this purpose, Clefia and Present. In this paper we provide the first comprehensive hardware architecture comparison between these ciphers, as well as a comparison with the current National Institute of Standards and Technology (NIST) standard, the Advanced Encryption Standard.
Resumo:
The proliferation of mobile devices in society accessing data via the ‘cloud’ is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in2. This requires increased performance from the magnetic pole of the electromagnetic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm x 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. Opportunistically, it points the way towards a new nanoscale magnetic field source to further develop in situ Transmission Electron Microscopy.
Resumo:
This article outlines the ongoing development of a locative smartphone app for iPhone and Android phones entitled The Belfast Soundwalks Project. Drawing upon a method known as soundwalking, the aim of this app is to engage the public in sonic art through the creation of up to ten soundwalks within the city of Belfast. This paper discusses the use of GPS enabled mobile devices in the creation of soundwalks in other cities. The authors identify various strategies for articulating an experience of listening in place as mediated by mobile technologies. The project aims to provide a platform for multiple artists to develop site-specific sound works which highlight the relationship between sound, place and community. The development of the app and the app interface are discussed, as are the methods employed to test and evaluate the project.
Resumo:
In existing WiFi-based localization methods, smart mobile devices consume quite a lot of power as WiFi interfaces need to be used for frequent AP scanning during the localization process. In this work, we design an energy-efficient indoor localization system called ZigBee assisted indoor localization (ZIL) based on WiFi fingerprints via ZigBee interference signatures. ZIL uses ZigBee interfaces to collect mixed WiFi signals, which include non-periodic WiFi data and periodic beacon signals. However, WiFi APs cannot be identified from these WiFi signals by ZigBee interfaces directly. To address this issue, we propose a method for detecting WiFi APs to form WiFi fingerprints from the signals collected by ZigBee interfaces. We propose a novel fingerprint matching algorithm to align a pair of fingerprints effectively. To improve the localization accuracy, we design the K-nearest neighbor (KNN) method with three different weighted distances and find that the KNN algorithm with the Manhattan distance performs best. Experiments show that ZIL can achieve the localization accuracy of 87%, which is competitive compared to state-of-the-art WiFi fingerprint-based approaches, and save energy by 68% on average compared to the approach based on WiFi interface.