934 resultados para Mixed Type Equations
Resumo:
Commercially available integrated compact fluorescent lamps (CFLs) use self-resonant ballasts on grounds of simplicity and cost. To understand how to improve ballast efficiency, it is necessary to quantify the losses. The losses occurring in these ballasts have been directly measured using a precision mini-calorimeter. In addition, a Pspice model has been used to simulate the performance of an 18 W integrated CFL. The lamp has been represented by a behavioural model and Jiles-Atherton equations were used to model the current transformer core. The total loss is in close agreement with measurements from the mini-calorimeter, confirming the accuracy of the model. The total loss was then disaggregated into component losses by simulation, showing that the output inductor is the primary source of loss, followed by the inverter switches. © 2011 The Institution of Engineering and Technology.
Resumo:
With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu 2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. © 2011 Elsevier B.V. All rights reserved.
Resumo:
We consider the smoothing problem for a class of conditionally linear Gaussian state-space (CLGSS) models, referred to as mixed linear/nonlinear models. In contrast to the better studied hierarchical CLGSS models, these allow for an intricate cross dependence between the linear and the nonlinear parts of the state vector. We derive a Rao-Blackwellized particle smoother (RBPS) for this model class by exploiting its tractable substructure. The smoother is of the forward filtering/backward simulation type. A key feature of the proposed method is that, unlike existing RBPS for this model class, the linear part of the state vector is marginalized out in both the forward direction and in the backward direction. © 2013 IEEE.
Resumo:
We consider systems of equations of the form where A is the underlying alphabet, the Xi are variables, the Pi,a are boolean functions in the variables Xi, and each δi is either the empty word or the empty set. The symbols υ and denote concatenation and union of languages over A. We show that any such system has a unique solution which, moreover, is regular. These equations correspond to a type of automation, called boolean automation, which is a generalization of a nondeterministic automation. The equations are then used to determine the language accepted by a sequential network; they are obtainable directly from the network.
Resumo:
The coordination reactions during the solvent extraction of cerium(IV) and fluorine(l) from mixed nitric acid and hydrofluoric acid solutions by di-(2-ethylhexyl)-2-ethylhexylphosphonate, L (DEHEHP) in heptane have been investigated. The extraction data have been analyzed by graphical methods taking into account all plausible species extracted into the organic phase. Different variables influencing the extraction of Ce(IV), such as the concentrations of nitrate ions, hydrofluroric acid, nitric acid, and extractant have been studied. The results demonstrate that DEHEHP can extract not only Ce(NO3)(4) as Ce(NO3)4.2L and HF as HF (.) H2O (.) L, but both together as Ce(HF)(NO3)(4) (.) L. The extraction equilibrium equations are determined according to slope analysis and IR spectra. The equilibrium constants of the extracted complexes have been calculated, taking into account complexation between the metal ion and inorganic ligands in the aqueous phase and all plausible complexes extracted into the organic phase. It is also shown that boric acid, which was added into the mixed solutions to complex with F(I) is not extracted by DEHEHP, and neither does it affect the extraction of cerium(IV) and HF, nor change the extraction mechanism.
Resumo:
Perovskite oxides LaTi1-xMgxO3 (x = 0.25, 0.5) were synthesized using high-pressure and-temperature method. LaTi0.75Mg0.25O3 is a new compound. This new synthesis route has some advantages. XRD analysis showed that the x = 0.25 sample belongs to cubic perovskite-type structure and the a = 0.5 sample belongs to orthorhombic perovskite-type structure. EPR measurement indicated that Ti ions were in mixed valence state of +3 and +4. IR measurement indicated that the vibration frequency and width of BO6 octahedron stretching vibration absorption band decreases with the increasing of x. The valence state of Ti ions can be altered by high-pressure and-temperature. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The mixed oxide La2CuO4 was synthesized by four different methods and characterized with XRD, BET, TEM and low angle XRD. The effect of the synthetic method on the crystal structure, crystal size, surface area and catalytic activity to NO - CO reaction were studied. The results showed that the samples derived from different methods exhibited different activity to NO-CO reaction, the reason may be that the concentration and type of oxygen defect were different when the synthetic methods were different.
Resumo:
A series of sample having the stoichiometry La4BaCu5-xMnxO12 (x = 0 similar to 5) were prepared, characterized by XRD, IR and H-2 - TPR and used as catalyst for NO + CO reaction. It was found that they have 5 - layered ABO(3) - type structure. The results of H-2 - TPR showed that the Cu ion was more easily reduced while a part of them was replaced by Mn ions. Their catalytic behavior to NO + CO reaction was investigate, La4BaCu2Mn3O12 showed the highest catalyst activity for the reaction than the others. The reaction mechanism is discussed:the activity of the catalysts could be attributed to the Cu ions, but it was improved when Mn ions took the place of some Cu ions.
Resumo:
The electrochemistry of Prussian blue mixed in a polymer medium containing MClO4 (M = Li+, Na+, K+, TBA(+)) as the supporting electrolyte was studied by means of solid-state voltammetry. This approach is new in Prussian blue studies. The behavior of PB in polymer electrolytes is somewhat similar to the well-known behavior for an electrochemically synthesized PB film in aqueous media. Besides, K+, Li+ and Na+ ions can also transport through the crystal of PB because of its zeolitic nature. The transport of TBA(+) ions is possible. Kinetic control lies in the diffusion of cations in and out of the lattice of Prussian blue. Reduction waves of Prussian blue depend on both the size and type of cations. PB is very stable upon electrochemical cycling in polymer electrolytes and air. This system may be used in rechargeable batteries and electrochromic devices.
Resumo:
The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 with perovskite (ABO(3)) and related(A(2)BO(4)) structures were prepared and the adsorption property for NO and the catalytic activity for NO decomposition over these oxidse were also tested. The catalysts were characterized by means of BET surface measurement, chemical analysis, NO-TPD etc.. It was shown that the adsorption amount of NO is correlated with the concentration of oxygen vacancy formed and the adsorption type and strength of NO are related to the valence of metallic ion. Generally there are three kinds of adsorption species, NO-, NO+ and NO on the mixed oxides, among them the negative adsorpion species (NO-) are active for NO decomposition. The weaker the adsorption of oxygen on the catalyst is, the faster the mobility of oxygen is and the easier the redox process takes place in reproducing the active sites in which the oxygen species (O-, O2-) would participate.
Resumo:
A series of (AO) (ABO(3))(n)(A = La, B = Ni, n = 1 similar to 4) type mixed oxides were synthesized and characterized by means of XRD, XPS, IR, TPD, TPR. Their structure characteristics and redox properties were studied. The nonstoichiometry (lambda) of oxygen and the valence of transition metal Ni were determined by using chemical analysis method. The catalytic activities of this series of mixed oxides for complete oxidation of CO and CH4 were examined and the relationships among activity, composition and structure were discussed.
Resumo:
A novel comb-like amphiphilic polymer, poly (2-acrylamidohexadecylsulfonic acid) (PAMC16S), was synthesized by free radical polymerization of the corresponding amphiphilic monomer in 1,4-dioxane-water mixed solvents. Depending on the ratio of water/dioxane in the solvent, the reaction proceeded by either precipitation polymerization or micellar polymerization. The molecular weight of the polymer obtained under similar conditions decreased and subsequently increased with the increase of water content in the mixed solvent. The polyion nature of PAMC16S was confirmed by viscosity data of ethanolic solutions. In addition, the polymer was characterized by solubility, IR, TG and wide angle X-ray diffraction methods.
Resumo:
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).
Resumo:
Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized. Cubic perovskite structures were formed for BaBi0.2COyFe0.8-yO3-delta (y less than or equal to 0.4) and BaBixCo0.2Fe0.8-xP3-delta (x=0.1-0.5) The materials exhibited considerable high oxygen permeability at high temperature. The oxygen permeation flux of BaBi0.2Co0.35Fe0.45O3-delta membrane reached about 0.77 x 10(-6) mol/cm(2) s under an air/helium oxygen partial pressure gradient at 900 degrees C, which was much higher than that of other bismuth-contained mixed conducting membranes. The permeation fluxes of the materials increased with the increase of cobalt content, but no apparent simple relationship was found with the bismuth content. The materials also demonstrated excellent reversibility of oxygen adsorption and desorption. Stable time-related oxygen permeation fluxes were found for BaBi0.2CO0.35Fe0.45O3-delta and BaBi0.3Co0.2Fe0.5O3-delta a membranes at 875 degrees C.
Resumo:
Zirconium-doped perovskite-type membrane materials of BaCo0.4Fe0.6-xZrxO3-delta (x = 0-0.4) with mixed oxygen ion and electron conductivity were synthesized through a method of combining citric and EDTA acid complexes. The results of X-ray diffraction (XRD), oxygen temperature-programmed desorption (O-2-TPD) and hydrogen temperature-programmed reduction (H-2-TPR) showed that the incorporation of proper amount of zirconium into BaCo0.4Fe0.6O3-delta could stabilize the ideal and cubic structure of perovskite. Studies on the oxygen permeability of the as-synthesized membrane disks under air/He gradient indicated that the content of zirconium in these materials had great effects on oxygen permeation flux, activation energy for oxygen permeation and operation stability. The high oxygen permeation flux of 0.90 ml cm(-2) min(-1) at 950degreesC, the single activation energy for oxygen permeation in the range of 600-950 degreesC and the long-term operation stability at a relatively lower operational temperature of 800 degreesC under air/He gradient were achieved for the BaCo0.4Fe0.4Zr0.2O3-delta material. Meanwhile, the effect of carbon dioxide on structural stability and oxygen permeability of this material was also studied in detail, which revealed that the reversible stability could be attained for it. (C) 2002 Elsevier Science B.V. All rights reserved.