984 resultados para Microstrip Patch Antennas
Resumo:
The main objective of this work is to optimize the performance of frequency selective surfaces (FSS) composed of crossed dipole conducting patches. The optimization process is performed by determining proper values for the width of the crossed dipoles and for the FSS array periodicity, while the length of the crossed dipoles is kept constant. Particularly, the objective is to determine values that provide wide bandwidth using a search algorithm with representation in bioinspired real numbers. Typically FSS structures composed of patch elements are used for band rejection filtering applications. The FSS structures primarily act like filters depending on the type of element chosen. The region of the electromagnetic spectrum chosen for this study is the one that goes from 7 GHz to 12 GHz, which includes mostly the X-band. This frequency band was chosen to allow the use of two X-band horn antennas, in the FSS measurement setup. The design of the FSS using the developed genetic algorithm allowed increasing the structure bandwidth
Resumo:
The planar circuits are structures that increasingly attracting the attention of researchers, due the good performance and capacity to integrate with other devices, in the prototyping of systems for transmitting and receiving signals in the microwave range. In this context, the study and development of new techniques for analysis of these devices have significantly contributed in the design of structures with excellent performance and high reliability. In this work, the full-wave method based on the concept of electromagnetic waves and the principle of reflection and transmission of waves at an interface, Wave Concept Iterative Procedure (WCIP), or iterative method of waves is described as a tool with high precision study microwave planar circuits. The proposed method is applied to the characterization of planar filters, microstrip antennas and frequency selective surfaces. Prototype devices were built and the experimental results confirmed the proposed mathematical model. The results were also compared with simulated results by Ansoft HFSS, observing a good agreement between them.
Resumo:
This work holds the purpose of presenting an auxiliary way of bone density measurement through the attenuation of electromagnetic waves. In order to do so, an arrangement of two microstrip antennas with rectangular configuration has been used, operating in a frequency of 2,49 GHz, and fed by a microstrip line on a substrate of fiberglass with permissiveness of 4.4 and height of 0,9 cm. Simulations were done with silica, bone meal, silica and gypsum blocks samples to prove the variation on the attenuation level of different combinations. Because of their good reproduction of the human beings anomaly aspects, samples of bovine bone were used. They were subjected to weighing, measurement and microwave radiation. The samples had their masses altered after mischaracterization and the process was repeated. The obtained data were inserted in a neural network and its training was proceeded with the best results gathered by correct classification on 100% of the samples. It comes to the conclusion that through only one non-ionizing wave in the 2,49 GHz zone it is possible to evaluate the attenuation level in the bone tissue, and that with the appliance of neural network fed with obtained characteristics in the experiment it is possible to classify a sample as having low or high bone density
Análise espectral de reflectarrays com substrato de duas camadas dielétricas anisotrópicas uniaxiais
Resumo:
Recently, an amazing development has been observed in telecommunication systems. Two good examples of this development are observed in mobile communication and aerospace systems. This impressive development is related to the increasing need for receiving and transmitting communication signals. Particularly, this development has required the study of new antennas and filters. This work presents a fullwave analysis of reflectarrays. The considered structures are composed by arrays of rectangular conducting patches printed on multilayer dieletric substrates, that are mounted on a ground plane. The analysis is developed in the spectral domain, using an equivalent transmission line method in combination with Galerkin method. Results for the reflection coefficient of these structures are presented and compared to those available in the literature. A good agreement was observed. Particularly, the developed analysis uses the transmission lines theory in combination with the incident potentials and the field continuity equations, at the structures interfaces, for obtaining the scattered field components expressions as function of the patch surface currents and of the incident field. Galerkin method is used to determine the unknown coefficients in the boundary value problem. Curves for the reflection coefficient of several reflectarray geometries are presented as function of frequency and of the structural parameters
Resumo:
This work has as main objective the application of Artificial Neural Networks, ANN, in the resolution of problems of RF /microwaves devices, as for example the prediction of the frequency response of some structures in an interest region. Artificial Neural Networks, are presently a alternative to the current methods of analysis of microwaves structures. Therefore they are capable to learn, and the more important to generalize the acquired knowledge, from any type of available data, keeping the precision of the original technique and adding the low computational cost of the neural models. For this reason, artificial neural networks are being increasily used for modeling microwaves devices. Multilayer Perceptron and Radial Base Functions models are used in this work. The advantages/disadvantages of these models and the referring algorithms of training of each one are described. Microwave planar devices, as Frequency Selective Surfaces and microstrip antennas, are in evidence due the increasing necessities of filtering and separation of eletromagnetic waves and the miniaturization of RF devices. Therefore, it is of fundamental importance the study of the structural parameters of these devices in a fast and accurate way. The presented results, show to the capacities of the neural techniques for modeling both Frequency Selective Surfaces and antennas
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study we explored the stochastic population dynamics of three exotic blowfly species, Chrysomya albiceps, Chrysomya megacephala and Chrysomya putoria, and two native species, Cochliomyia macellaria and Lucilia eximia, by combining a density-dependent growth model with a two-patch metapopulation model. Stochastic fecundity, survival and migration were investigated by permitting random variations between predetermined demographic boundary values based on experimental data. Lucilia eximia and Chrysomya albiceps were the species most susceptible to the risk of local extinction. Cochliomyia macellaria, C. megacephala and C. putoria exhibited lower risks of extinction when compared to the other species. The simultaneous analysis of stochastic fecundity and survival revealed an increase in the extinction risk for all species. When stochastic fecundity, survival and migration were simulated together, the coupled populations were synchronized in the five species. These results are discussed, emphasizing biological invasion and interspecific interaction dynamics.
Resumo:
We examine the classical problem of the existence of a threshold size for a patch to allow for survival of a given population in the case where the patch is not completely isolated. The surrounding habitat matrix is characterized by a non-zero carrying capacity. We show that a critical patch size cannot be strictly defined in this case. We also obtain the saturation density in such a patch as a function of the size of the patch and the relative carrying capacity of the outer region. We argue that this relative carrying capacity is a measure of the isolation of the patch. Our results are then compared with conclusions drawn from observations of the population dynamics of understorey birds in fragments of the Amazonian forest and shown to qualitatively agree with them, offering an explanation for the importance of dispersal and isolation in these observations. Finally, we show that a generalized critical patch size can be introduced resorting to threshold densities for the observation of a given species.
Resumo:
We examined the relationship between food patch size and feeding party size with comparative data from two populations of muriquis (Brachyteles arachnoides) in the 37,797-ha forest at the Parque Estadual de Carlos Botelho (PECB), São Paulo, and the 800-ha forest at the Estacao Biologica de Caratinga (EBC), Minas Gerais. Precipitation Mins more abundant and less seasonal at PECB than EBC, and the density of large trees (>25.0 cm) was higher at PECB (206 ha(-1)) than at EBC (132 ha(-1)). At both sites, the size of feeding parties is positively related to the size of food patches, As predicted, food parches at PECB are significantly larger than those at EBC for both fruit and leaf sources. Contrary to expectations, feeding parties were larger at EEC than PECB, the higher population density of muriquis and sympatric primates at EBC may make large associations more advantageous to these muriquis than to muriquis living at lower population densities in PECB.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents a model for the control of the radiation pattern of a circular array of antennas, shaping it to address the radiation beam in the direction of the user, in order to reduce the transmitted power and to attenuate interference. The control of the array is based on Artificial Neural Networks (ANN) of the type RBF (Radial Basis Functions), trained from samples generated by the Wiener equation. The obtained results suggest that the objective was reached.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nos últimos anos, com o surgimento de novos serviços e equipamentos para o sistema de comunicação móvel com maiores larguras de banda de operação e ocupando espaços cada vez menores, o desenvolvimento de novas antenas de bandas largas e com dimensões pequenas se tornou um dos principais desafios das pesquisas na área de antenas. Neste trabalho, duas estruturas de antenas de bandas largas e dimensões reduzidas foram analisadas e otimizadas. Na primeira parte, a antena filamentar monopolo dobrado (Wire Built-in Folded Monopole Antenna, W-BFMA) foi investigada e teve sua largura de banda otimizada, conectada a linha de alimentação em diferentes impedâncias. Para modelar a estrutura da antena W-BFMA foi usado o método numérico dos momentos (Method of Moments - MoM), e para sua otimização os métodos: paramétrico, hill climbing e algoritmo genético (AG). Programas computacionais baseados na linguagem Matlab foram desenvolvidos para modelagem, otimização e cálculos das principais curvas características da antena W-BFMA. Na segunda parte, duas diferentes configurações de antenas monopolos planos usando a tecnologia de banda ultra-larga (Ultra- Wideband Antenna, UWB) foram investigadas e otimizadas com a ajuda do programa comercial Computer Simulation Technology (CST) Microwave Studio. Ambas as antenas UWB foram alimentadas por uma linha de microfita (microstrip line) na impedância de 50Ω. A antena UWB que apresentou melhor resultado teve o seu protótipo construído, as principais curvas características, tais como: perda de retorno, ganho, distribuição de corrente e diagrama de radiação foram analisadas. Os resultados simulados foram comparados com resultados obtidos experimentalmente.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC