898 resultados para Micron and small enterprise
Resumo:
Fuller-Love, N., Midmore, P., Thomas, D., Henley, A. (2006). Entrepreneurship and rural economic development: A scenario analysis approach. International Journal of Entrepreneurial Behaviour and Research, 12 (5), 289-305. RAE2008
Resumo:
Anterior inferotemporal cortex (ITa) plays a key role in visual object recognition. Recognition is tolerant to object position, size, and view changes, yet recent neurophysiological data show ITa cells with high object selectivity often have low position tolerance, and vice versa. A neural model learns to simulate both this tradeoff and ITa responses to image morphs using large-scale and small-scale IT cells whose population properties may support invariant recognition.
Resumo:
The outcomes for both (i) radiation therapy and (ii) preclinical small animal radio- biology studies are dependent on the delivery of a known quantity of radiation to a specific and intentional location. Adverse effects can result from these procedures if the dose to the target is too high or low, and can also result from an incorrect spatial distribution in which nearby normal healthy tissue can be undesirably damaged by poor radiation delivery techniques. Thus, in mice and humans alike, the spatial dose distributions from radiation sources should be well characterized in terms of the absolute dose quantity, and with pin-point accuracy. When dealing with the steep spatial dose gradients consequential to either (i) high dose rate (HDR) brachytherapy or (ii) within the small organs and tissue inhomogeneities of mice, obtaining accurate and highly precise dose results can be very challenging, considering commercially available radiation detection tools, such as ion chambers, are often too large for in-vivo use.
In this dissertation two tools are developed and applied for both clinical and preclinical radiation measurement. The first tool is a novel radiation detector for acquiring physical measurements, fabricated from an inorganic nano-crystalline scintillator that has been fixed on an optical fiber terminus. This dosimeter allows for the measurement of point doses to sub-millimeter resolution, and has the ability to be placed in-vivo in humans and small animals. Real-time data is displayed to the user to provide instant quality assurance and dose-rate information. The second tool utilizes an open source Monte Carlo particle transport code, and was applied for small animal dosimetry studies to calculate organ doses and recommend new techniques of dose prescription in mice, as well as to characterize dose to the murine bone marrow compartment with micron-scale resolution.
Hardware design changes were implemented to reduce the overall fiber diameter to <0.9 mm for the nano-crystalline scintillator based fiber optic detector (NanoFOD) system. Lower limits of device sensitivity were found to be approximately 0.05 cGy/s. Herein, this detector was demonstrated to perform quality assurance of clinical 192Ir HDR brachytherapy procedures, providing comparable dose measurements as thermo-luminescent dosimeters and accuracy within 20% of the treatment planning software (TPS) for 27 treatments conducted, with an inter-quartile range ratio to the TPS dose value of (1.02-0.94=0.08). After removing contaminant signals (Cerenkov and diode background), calibration of the detector enabled accurate dose measurements for vaginal applicator brachytherapy procedures. For 192Ir use, energy response changed by a factor of 2.25 over the SDD values of 3 to 9 cm; however a cap made of 0.2 mm thickness silver reduced energy dependence to a factor of 1.25 over the same SDD range, but had the consequence of reducing overall sensitivity by 33%.
For preclinical measurements, dose accuracy of the NanoFOD was within 1.3% of MOSFET measured dose values in a cylindrical mouse phantom at 225 kV for x-ray irradiation at angles of 0, 90, 180, and 270˝. The NanoFOD exhibited small changes in angular sensitivity, with a coefficient of variation (COV) of 3.6% at 120 kV and 1% at 225 kV. When the NanoFOD was placed alongside a MOSFET in the liver of a sacrificed mouse and treatment was delivered at 225 kV with 0.3 mm Cu filter, the dose difference was only 1.09% with use of the 4x4 cm collimator, and -0.03% with no collimation. Additionally, the NanoFOD utilized a scintillator of 11 µm thickness to measure small x-ray fields for microbeam radiation therapy (MRT) applications, and achieved 2.7% dose accuracy of the microbeam peak in comparison to radiochromic film. Modest differences between the full-width at half maximum measured lateral dimension of the MRT system were observed between the NanoFOD (420 µm) and radiochromic film (320 µm), but these differences have been explained mostly as an artifact due to the geometry used and volumetric effects in the scintillator material. Characterization of the energy dependence for the yttrium-oxide based scintillator material was performed in the range of 40-320 kV (2 mm Al filtration), and the maximum device sensitivity was achieved at 100 kV. Tissue maximum ratio data measurements were carried out on a small animal x-ray irradiator system at 320 kV and demonstrated an average difference of 0.9% as compared to a MOSFET dosimeter in the range of 2.5 to 33 cm depth in tissue equivalent plastic blocks. Irradiation of the NanoFOD fiber and scintillator material on a 137Cs gamma irradiator to 1600 Gy did not produce any measurable change in light output, suggesting that the NanoFOD system may be re-used without the need for replacement or recalibration over its lifetime.
For small animal irradiator systems, researchers can deliver a given dose to a target organ by controlling exposure time. Currently, researchers calculate this exposure time by dividing the total dose that they wish to deliver by a single provided dose rate value. This method is independent of the target organ. Studies conducted here used Monte Carlo particle transport codes to justify a new method of dose prescription in mice, that considers organ specific doses. Monte Carlo simulations were performed in the Geant4 Application for Tomographic Emission (GATE) toolkit using a MOBY mouse whole-body phantom. The non-homogeneous phantom was comprised of 256x256x800 voxels of size 0.145x0.145x0.145 mm3. Differences of up to 20-30% in dose to soft-tissue target organs was demonstrated, and methods for alleviating these errors were suggested during whole body radiation of mice by utilizing organ specific and x-ray tube filter specific dose rates for all irradiations.
Monte Carlo analysis was used on 1 µm resolution CT images of a mouse femur and a mouse vertebra to calculate the dose gradients within the bone marrow (BM) compartment of mice based on different radiation beam qualities relevant to x-ray and isotope type irradiators. Results and findings indicated that soft x-ray beams (160 kV at 0.62 mm Cu HVL and 320 kV at 1 mm Cu HVL) lead to substantially higher dose to BM within close proximity to mineral bone (within about 60 µm) as compared to hard x-ray beams (320 kV at 4 mm Cu HVL) and isotope based gamma irradiators (137Cs). The average dose increases to the BM in the vertebra for these four aforementioned radiation beam qualities were found to be 31%, 17%, 8%, and 1%, respectively. Both in-vitro and in-vivo experimental studies confirmed these simulation results, demonstrating that the 320 kV, 1 mm Cu HVL beam caused statistically significant increased killing to the BM cells at 6 Gy dose levels in comparison to both the 320 kV, 4 mm Cu HVL and the 662 keV, 137Cs beams.
Resumo:
Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight <500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN.
Resumo:
Artisanal and small-scale mining (ASM)-low tech, labour intensive mineral processing and excavation activity-is an economic mainstay in rural sub-Saharan Africa, providing direct employment to over two million people. This paper introduces a special issue on 'Small-scale mining, poverty and development in sub-Saharan Africa'. It focuses on the core conceptual issues covered in the literature, and the policy implications of the findings reported in the papers in this special issue. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper critiques the approach taken by the Ghanaian Government to address mercury pollution in the artisanal and small-scale gold mining sector. Unmonitored releases of mercury-used in the gold-amalgamation process-have caused numerous environmental complications throughout rural Ghana. Certain policy, technological and educational initiatives taken to address the mounting problem, however, have proved marginally effective at best, having been designed and implemented without careful analysis of mine community dynamics, the organization of activities, operators' needs and local geological conditions. Marked improvements can only be achieved in this area through increased government-initiated dialogue with the now-ostracized illegal galamsey mining community; introducing simple, cost-effective techniques for the reduction of mercury emissions; and effecting government-sponsored participatory training exercises as mediums for communicating information about appropriate technologies and the environment. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
• Objectives The objective of this paper is to propose a framework for mapping the sustainable development and poverty alleviation impacts of social and environmental enterprises in Africa. This framework is then piloted with reference to an East African Ecobusiness. • Prior Work This paper is based on data collected as part of a wider research project examining social and environmental enterprises across the 19 countries of Southern and Eastern Africa. In total, the sustainable development and poverty alleviation impacts of 20 in-depth case studies in 4 countries are being examined. • Approach Data was collected using in-depth interviews with multiple stakeholders associated with the case study business. Secondary materials were also analysed and a quantitative survey of customers undertaken. • Results In addition to their impacts on the environment, African eco businesses can also have substantial social, economic and wider poverty alleviation impacts. This paper maps the impacts of a case study East African ecobusiness, as part of developing a social and environmental enterprise impact framework for Africa and the wider developing world. In our case study, positive and negative impacts are identified, while questions are raised in relation to tradeoffs between social and environmental objectives and temporal dimensions of impact. The usefulness of existing frameworks for understanding the social, environmental and development impacts of these kinds of organisations are also considered. • Implications This paper outlines the necessity of building an African-centric impact map to capture the multi-level poverty alleviation and sustainable development impacts of social and environmental enterprise activity in developing world environments. The framework proposed also offers guidance to businesses operating in Africa about the factors that might be considered as part of their wider social and environmental responsibilities. • Value Assessing the impact of social and environmental enterprises, especially as a route to development within low income countries, is receiving increasing attention in academia and beyond. This paper presents a useful contribution to the scarce literature on social and environmental enterprises in Africa.
Resumo:
This paper presents a preliminary exploration of the informal/formal economy nexus and entrepreneurial processes amongst a sample of Kenyan roadside vendors who mostly operate in the informal economy. Using semi-structured interviews, data was collected from sixty street vendors across Kenya. In particular the paper focuses on the relationship between the informal and formal economy and the factors that promote formality amongst micro and small enterprises in developing countries. The paper presents a conceptualization of a potential segmentation of the informal economy, considering the implications of this in terms of base of the pyramid initiatives and the promotion of development through enterprise.
Resumo:
The paper presents research with small and medium enterprise (SME) owners who have participated in a leadership development programme. The primary focus of the paper is on learning transfer and factors affecting it, arguing that entrepreneurs must engage in ‘action’ in order to ‘learn’ and that under certain conditions they may transfer learning to their firm. The paper draws on data from 19 focus groups undertaken from 2010 to 2012, involving 51 participants in the LEAD Wales programme. It considers the literatures exploring learning transfer and develops a conceptual framework, outlining four areas of focus for entrepreneurial learning. Utilising thematic analysis, it describes and evaluates what (actual facts and information) and how (techniques, styles of learning) participants transfer and what actions they take to improve the business and develop their people. The paper illustrates the complex mechanisms involved in this process and concludes that action learning is a method of facilitating entrepreneurial learning which is able to help address some of the problems of engagement, relevance and value that have been highlighted previously. The paper concludes that the efficacy of an entrepreneurial learning intervention in SMEs may depend on the effectiveness of learning transfer.
Resumo:
In early modern times, warfare in Europe took on many diverse and overlapping forms. Our modern notions of ‘regular’ and ‘irregular’ warfare, of ‘major war’ and ‘small war’, have their roots in much greater diversity than such binary notions allow for. While insurgencies go back to time immemorial, they have become conceptually fused with ‘small wars’. This is a term first used to denote special operations, often carried out by military companies formed from special ethnic groups and then recruited into larger armies. In its Spanish form, guerrilla, the term ‘small war’ came to stand for an ideologically-motivated insurgency against the state authorities or occupying forces of another power. There is much overlap between the phenomena of irregular warfare in the sense of special operations alongside regular operations, and irregular warfare of insurgents against the regular forces of a state. This book demonstrates how long the two phenomena were in flux and fed on each other, from the raiding operations of the 16th century to the ‘small wars’ or special operations conducted by special units in the 19th century, which existed alongside and could merge with a popular insurgency. This book is based on a special issue of the journal Small Wars & Insurgencies.
Resumo:
A three-dimensional time-dependent hydrodynamic and heat transport model of Lake Binaba, a shallow and small dam reservoir in Ghana, emphasizing the simulation of dynamics and thermal structure has been developed. Most numerical studies of temperature dynamics in reservoirs are based on one- or two-dimensional models. These models are not applicable for reservoirs characterized with complex flow pattern and unsteady heat exchange between the atmosphere and water surface. Continuity, momentum and temperature transport equations have been solved. Proper assignment of boundary conditions, especially surface heat fluxes, has been found crucial in simulating the lake’s hydrothermal dynamics. This model is based on the Reynolds Average Navier-Stokes equations, using a Boussinesq approach, with a standard k − ε turbulence closure to solve the flow field. The thermal model includes a heat source term, which takes into account the short wave radiation and also heat convection at the free surface, which is function of air temperatures, wind velocity and stability conditions of atmospheric boundary layer over the water surface. The governing equations of the model have been solved by OpenFOAM; an open source, freely available CFD toolbox. As its core, OpenFOAM has a set of efficient C++ modules that are used to build solvers. It uses collocated, polyhedral numerics that can be applied on unstructured meshes and can be easily extended to run in parallel. A new solver has been developed to solve the hydrothermal model of lake. The simulated temperature was compared against a 15 days field data set. Simulated and measured temperature profiles in the probe locations show reasonable agreement. The model might be able to compute total heat storage of water bodies to estimate evaporation from water surface.
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
Resumo:
The local and medium-range structures of siloxane-POE hybrids doped with Fe(III) ions and prepared by the sol-gel process were investigated by X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) and small-angle X-ray scattering (SAXS), respectively. The experimental results show that the structure of these composites depends on the doping level. EXAFS data reveal that, for low doping levels ([O]/[Fe] > 40, oxygens being of the ether-type of the POE chains), Fe(III) ions are surrounded essentially by a shell of chlorine atoms, suggesting the formation of FeCl4- anions. At high doping levels ([O]/[Fe] < 20), Fe(III) ions interacts mainly with oxygen atoms and form FeOx species. The relative proportion of FeOx species increases with iron concentration, this result being consistent with the results of SAXS measurements showing that increasing iron doping induces the formation of iron-rich nanodomains embedded in the polymer matrix.
Resumo:
The carbonyl complexes [WCl(CO)(3)(bipy) (HgCl)] (1), [Fe(CO)(4)(HgCl)(2)] (2) and W(CO)(6)] (3) were immobilized on a silica gel surface organofunctionalized with piperazine groups. The products obtained were studied by IR spectroscopy and small angle X-ray scattering (SAXS) techniques. The IR data show that the immobilization of heterobimetallic compounds 1 and 2, on the functionalized surface, occurred through the mercury atom, while for 3 the displacement of one CO group by the nitrogen of a piperazine molecule was observed. The data obtained from SAXS indicate that particles have a uniform size and reveal suitable modifications on the functionalized surface after immobilization of metal carbonyl complexes. The average intermolecular distance (l(ij)) for piperazine ligands on support is 8.7 Angstrom, for the metal carbonyl complex 1 it is 18.8 Angstrom, for complex 2 it is 16.2 Angstrom and for complex 3 it is 15.3 Angstrom. Copyright (C) 1996 Elsevier B.V. Ltd
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)