937 resultados para Markov chains, uniformization, inexact methods, relaxed matrix-vector
Resumo:
Cover title.
Resumo:
Reasons for performing study: The dysadhesion and destruction of lamellar basement membrane of laminitis may be due to increased lamellar metalloproteinase activity. Characterising lamellar metalloproteinase-2 (MMP-2) and locating it in lamellar tissues may help determine if laminitis pathology is associated with increased MMP-2 transcription. Objectives: To clone and sequence the cDNA encoding lamellar MMP-2, develop antibody and in situ hybridisation probes to locate lamellar MMP-2 and quantitate MMP-2 transcription in normal and laminitis tissue. Methods: Total RNA was isolated, fragmented by RT-PCR, cloned into vector and sequenced. Rabbit anti-equine MMP-2 and labelled MMP-2 riboprobe were developed to analyse and quantitate MMP-2 expression. Results: Western immunoblotting with anti-MMP-2 detected 72 kDa MMP-2 in hoof tissue homogenates and cross-reacted with human MMP-2. Immunohistochemistry and in situ hybridisation detected MMP-2 in the cytoplasm of basal and parabasal cells in close proximity to the lamellar basement membrane. Northern analysis and quantitative real-time PCR showed MMP-2 expression significantly (P
Resumo:
Promiscuous human leukocyte antigen (HLA) binding peptides are ideal targets for vaccine development. Existing computational models for prediction of promiscuous peptides used hidden Markov models and artificial neural networks as prediction algorithms. We report a system based on support vector machines that outperforms previously published methods. Preliminary testing showed that it can predict peptides binding to HLA-A2 and -A3 super-type molecules with excellent accuracy, even for molecules where no binding data are currently available.
Resumo:
Gateway technology is a powerful system for converting a single entry vector into a wide variety of expression vectors. We expressed recombinant influenza matrix protein M1 (FMP), a potent antigen for cytotoxic T cells, using the Gateway vector pET-DEST42 containing the FMP cDNA, and purified the expressed FMP as a single 32 kDa recombinant protein. N-terminal and internal protein sequencing, however, showed that the recombinant FMP contained an extra 10 amino acids fused to the N-terminal of native FMP. Further investigation of the DNA sequence adjacent to the 5'-FMP cDNA indicated that the TTG in the attB1 site (30bp upstream of the ATG in the 5'-FMP cDNA) behaved as a dominant translation start site, resulting in a 10 amino acid extension of the recombinant FMP. Thus, it is possible that recombinant proteins produced by this Gateway vector contain unexpected vector-derived peptides, which may affect experimental outcomes. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
We introduce a general matrix formulation for multiuser channels and analyse the special cases of Multiple-Input Multiple-Output channels, channels with interference and relay arrays under LDPC coding using methods developed for the statistical mechanics of disordered systems. We use the replica method to provide results for the typical overlaps of the original and recovered messages and discuss their implications. The results obtained are consistent with belief propagation and density evolution results but also complement them giving additional insights into the information dynamics of these channels with unexpected effects in some cases.
Resumo:
Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.
Resumo:
We present a parallel genetic algorithm for nding matrix multiplication algo-rithms. For 3 x 3 matrices our genetic algorithm successfully discovered algo-rithms requiring 23 multiplications, which are equivalent to the currently best known human-developed algorithms. We also studied the cases with less mul-tiplications and evaluated the suitability of the methods discovered. Although our evolutionary method did not reach the theoretical lower bound it led to an approximate solution for 22 multiplications.
Resumo:
Rotation invariance is important for an iris recognition system since changes of head orientation and binocular vergence may cause eye rotation. The conventional methods of iris recognition cannot achieve true rotation invariance. They only achieve approximate rotation invariance by rotating the feature vector before matching or unwrapping the iris ring at different initial angles. In these methods, the complexity of the method is increased, and when the rotation scale is beyond the certain scope, the error rates of these methods may substantially increase. In order to solve this problem, a new rotation invariant approach for iris feature extraction based on the non-separable wavelet is proposed in this paper. Firstly, a bank of non-separable orthogonal wavelet filters is used to capture characteristics of the iris. Secondly, a method of Markov random fields is used to capture rotation invariant iris feature. Finally, two-class kernel Fisher classifiers are adopted for classification. Experimental results on public iris databases show that the proposed approach has a low error rate and achieves true rotation invariance. © 2010.
Resumo:
The lack of flexibility in logistic systems currently on the market leads to the development of new innovative transportation systems. In order to find the optimal configuration of such a system depending on the current goal functions, for example minimization of transport times and maximization of the throughput, various mathematical methods of multi-criteria optimization are applicable. In this work, the concept of a complex transportation system is presented. Furthermore, the question of finding the optimal configuration of such a system through mathematical methods of optimization is considered.
Resumo:
The challenges of the current global food systems are often framed around feeding the world's growing population while meeting sustainable development for future generations. Globalization has brought to a fragmentation of food spaces, leading to a flexible and mutable supply chain. This poses a major challenge to food and nutrition security, affecting also rural-urban dynamics in territories. Furthermore, the recent crises have highlighted the vulnerability to shocks and disruptions of the food systems and the eco-system due to the intensive management of natural, human and economic capital. Hence, a sustainable and resilient transition of the food systems is required through a multi-faceted approach that tackles the causes of unsustainability and promotes sustainable practices at all levels of the food system. In this respect, a territorial approach becomes a relevant entry point of analysis for the food system’s multifunctionality and can support the evaluation of sustainability by quantifying impacts associated with quantitative methods and understanding the territorial responsibility of different actors with qualitative ones. Against this background the present research aims to i) investigate the environmental, costing and social indicators suitable for a scoring system able to measure the integrated sustainability performance of food initiatives within the City/Region territorial context; ii) develop a territorial assessment framework to measure sustainability impacts of agricultural systems; and iii) define an integrated methodology to match production and consumption at a territorial level to foster a long-term vision of short food supply chains. From a methodological perspective, the research proposes a mixed quantitative and qualitative research method. The outcomes provide an in-depth view into the environmental and socio-economic impacts of food systems at the territorial level, investigating possible indicators, frameworks, and business strategies to foster their future sustainable development.
Resumo:
Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.
Resumo:
Corynebacterium species (spp.) are among the most frequently isolated pathogens associated with subclinical mastitis in dairy cows. However, simple, fast, and reliable methods for the identification of species of the genus Corynebacterium are not currently available. This study aimed to evaluate the usefulness of matrix-assisted laser desorption ionization/mass spectrometry (MALDI-TOF MS) for identifying Corynebacterium spp. isolated from the mammary glands of dairy cows. Corynebacterium spp. were isolated from milk samples via microbiological culture (n=180) and were analyzed by MALDI-TOF MS and 16S rRNA gene sequencing. Using MALDI-TOF MS methodology, 161 Corynebacterium spp. isolates (89.4%) were correctly identified at the species level, whereas 12 isolates (6.7%) were identified at the genus level. Most isolates that were identified at the species level with 16 S rRNA gene sequencing were identified as Corynebacterium bovis (n=156; 86.7%) were also identified as C. bovis with MALDI-TOF MS. Five Corynebacterium spp. isolates (2.8%) were not correctly identified at the species level with MALDI-TOF MS and 2 isolates (1.1%) were considered unidentified because despite having MALDI-TOF MS scores >2, only the genus level was correctly identified. Therefore, MALDI-TOF MS could serve as an alternative method for species-level diagnoses of bovine intramammary infections caused by Corynebacterium spp.
Resumo:
Technical evaluation of analytical data is of extreme relevance considering it can be used for comparisons with environmental quality standards and decision-making as related to the management of disposal of dredged sediments and the evaluation of salt and brackish water quality in accordance with CONAMA 357/05 Resolution. It is, therefore, essential that the project manager discusses the environmental agency's technical requirements with the laboratory contracted for the follow-up of the analysis underway and even with a view to possible re-analysis when anomalous data are identified. The main technical requirements are: (1) method quantitation limits (QLs) should fall below environmental standards; (2) analyses should be carried out in laboratories whose analytical scope is accredited by the National Institute of Metrology (INMETRO) or qualified or accepted by a licensing agency; (3) chain of custody should be provided in order to ensure sample traceability; (4) control charts should be provided to prove method performance; (5) certified reference material analysis or, if that is not available, matrix spike analysis, should be undertaken and (6) chromatograms should be included in the analytical report. Within this context and with a view to helping environmental managers in analytical report evaluation, this work has as objectives the discussion of the limitations of the application of SW 846 US EPA methods to marine samples, the consequences of having data based on method detection limits (MDL) and not sample quantitation limits (SQL), and present possible modifications of the principal method applied by laboratories in order to comply with environmental quality standards.
Resumo:
This paper deals with the long run average continuous control problem of piecewise deterministic Markov processes (PDMPs) taking values in a general Borel space and with compact action space depending on the state variable. The control variable acts on the jump rate and transition measure of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily bounded. Our first main result is to obtain an optimality equation for the long run average cost in terms of a discrete-time optimality equation related to the embedded Markov chain given by the postjump location of the PDMP. Our second main result guarantees the existence of a feedback measurable selector for the discrete-time optimality equation by establishing a connection between this equation and an integro-differential equation. Our final main result is to obtain some sufficient conditions for the existence of a solution for a discrete-time optimality inequality and an ordinary optimal feedback control for the long run average cost using the so-called vanishing discount approach. Two examples are presented illustrating the possible applications of the results developed in the paper.