650 resultados para MT1-MMP
Resumo:
Silver nanorods have been grown by electrodeposition into thin film porous alumina templates (AAO). Optical transmission measurements using p-polarized incident white light shows clear plasmon resonance extinction peaks. We successfully model the dependence on angle in incidence of extinction peak height and position using a multiple-multipoles (MMP) approach with the different spectral features being clearly associated with the effective electric field distribution and coupling between individual nanorods.
Resumo:
Oxidative stress may increase lung permeability by upregulation of matrix-metalloproteinase-9 (MMP-8), a type-IV collagenase that can disrupt alveolar basement membranes. We have compared a marker of oxidative stress (protein carbonyl residues) with levels of MMP-8 and its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), in bronchoalveolar lavage samples from newborn babies. Bronchoalveolar lavage samples (n = 87, two from each time point) were taken in the first 6 postnatal days from 41 ventilated babies: 18 of
Resumo:
Asthma is a chronic inflammatory disease characterised by airways remodelling. In mouse models IL-9 and IL-13 have been implicated in airways remodelling including mucus hypersecretion and goblet cell hyperplasia. Their role, especially that of IL-9, has been much less studied in authentic human ex vivo models of the bronchial epithelium from normal and asthmatic children. We assessed the effects of IL-9, IL-13 and an IL-9/IL-13 combination, during differentiation of bronchial epithelial cells from normal (n?=?6) and asthmatic (n?=?8) children. Cultures were analysed for morphological markers and factors associated with altered differentiation (MUC5AC, SPDEF and MMP-7). IL-9, IL-9/IL-13 combination and IL-13 stimulated bronchial epithelial cells from normal children had fewer ciliated cells [14.8% (SD 8.9), p?=?0.048, 12.4 (SD 6.1), p?=?0.016 and 7.3% (SD 6.6), p?=?0.031] respectively compared with unstimulated [(21.4% (SD 9.6)]. IL-9 stimulation had no effect on goblet cell number in either group whereas IL-9/IL-13 combination and IL-13 significantly increased goblet cell number [24.8% (SD 8.8), p?=?0.02), 32.9% (SD 8.6), p?=?0.007] compared with unstimulated normal bronchial cells [(18.6% (SD 6.2)]. All stimulations increased MUC5AC mRNA in bronchial epithelial cells from normal children and increased MUC5AC mucin secretion. MMP-7 localisation was dysregulated in normal bronchial epithelium stimulated with Th2 cytokines which resembled the unstimulated bronchial epithelium of asthmatic children. All stimulations resulted in a significant reduction in transepithelial electrical resistance values over time suggesting a role in altered tight junction formation. We conclude that IL-9 does not increase goblet cell numbers in bronchial epithelial cell cultures from normal or asthmatic children. IL-9 and IL-13 alone and in combination, reduce ciliated cell numbers and transepithelial electrical resistance during differentiation of normal epithelium, which clinically could inhibit mucociliary clearance and drive an altered repair mechanism. This suggests an alternative role for IL-9 in airways remodelling and reaffirms IL-9 as a potential therapeutic target.© 2013 Parker et al.
Resumo:
Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1a, IL-17, IFN-c, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.
Resumo:
Rationale: Increasing epithelial repair and regeneration may hasten resolution of lung injury in patients with the Acute Respiratory Distress Syndrome (ARDS). In animal models of ARDS, Keratinocyte Growth Factor (KGF) reduces injury and increases epithelial proliferation and repair. The effect of KGF in the human alveolus is unknown.
Objectives: To test whether KGF can attenuate alveolar injury in a human model of ARDS.
Methods: Volunteers were randomized to intravenous KGF (60 μg/kg) or placebo for 3 days, before inhaling 50μg lipopolysaccharide. Six hours later, subjects underwent bronchoalveolar lavage (BAL) to quantify markers of alveolar inflammation and cell-specific injury.
Measurements and Main Results: KGF did not alter leukocyte infiltration or markers of permeability in response to LPS. KGF increased BAL concentrations of Surfactant Protein D (SP-D), MMP-9, IL-1Ra, GM-CSF and CRP. In vitro, BAL fluid from KGF-treated subjects (KGF BAL) inhibited pulmonary fibroblast proliferation, but increased alveolar epithelial proliferation. Active MMP-9 increased alveolar epithelial wound repair. Finally, BAL from the KGF pre-treated group enhanced macrophage phagocytic uptake of apoptotic epithelial cells and bacteria compared with BAL from the placebo-treated group. This effect was blocked by inhibiting activation of the GM-CSF receptor.
Conclusions: KGF treatment increases BAL SP-D, a marker of type II alveolar epithelial cell proliferation in a human model of ALI. Additionally KGF increases alveolar concentrations of the anti-inflammatory cytokine IL-1Ra, and mediators that drive epithelial repair (MMP-9) and enhance macrophage clearance of dead cells and bacteria (GM-CSF).
Resumo:
Epithelial to mesenchymal transition (EMT) is a process whereby epithelial cells undergo transition to a mesenchymal phenotype and contribute directly to fibrotic disease. Recent studies support a role for EMT in cutaneous fibrotic diseases including scleroderma and hypertrophic scarring, though there is limited data on the cytokines and signalling mechanisms regulating cutaneous EMT. We investigated the ability of TGF-β and TNF-α, both over-expressed in cutaneous scleroderma and central mediators of EMT in other epithelial cell types, to induce EMT in primary keratinocytes and studied the signalling mechanisms regulating this process. TGF-β induced EMT in normal human epidermal keratinocytes (NHEK cells) and this process was enhanced by TNF-α. EMT was characterised by changes in morphology, proteome (down-regulation of E-cadherin and Zo-1, and up-regulation of vimentin and fibronectin), MMP secretion and COL1α1 mRNA expression. TGF-β and TNF-α in combination activated SMAD and p38 signalling in NHEK cells. P38 inhibition with SB203580 partially attenuated EMT, whereas SMAD inhibition using SB431542 significantly inhibited EMT and also reversed established EMT. These data highlight the retained plasticity of adult keratinocytes and support further studies of EMT in clinically relevant in vivo models of cutaneous fibrosis, and investigation of SMAD inhibition as a potential therapeutic intervention. This article is protected by copyright. All rights reserved.
Resumo:
Background: Excessive use of empirical antibiotics is common in critically ill patients. Rapid biomarker-based exclusion of infection may improve antibiotic stewardship in ventilator-acquired pneumonia (VAP). However, successful validation of the usefulness of potential markers in this setting is exceptionally rare.
Objectives: We sought to validate the capacity for specific host inflammatory mediators to exclude pneumonia in patients with suspected VAP.
Methods: A prospective, multicentre, validation study of patients with suspected VAP was conducted in 12 intensive care units. VAP was confirmed following bronchoscopy by culture of a potential pathogen in bronchoalveolar lavage fluid (BALF) at >104 colony forming units per millilitre (cfu/mL). Interleukin-1 beta (IL-1β), IL-8, matrix metalloproteinase-8 (MMP-8), MMP-9 and human neutrophil elastase (HNE) were quantified in BALF. Diagnostic utility was determined for biomarkers individually and in combination.
Results: Paired BALF culture and biomarker results were available for 150 patients. 53 patients (35%) had VAP and 97 (65%) patients formed the non-VAP group. All biomarkers were significantly higher in the VAP group (p<0.001). The area under the receiver operator characteristic curve for IL-1β was 0.81; IL-8, 0.74; MMP-8, 0.76; MMP-9, 0.79 and HNE, 0.78. A combination of IL-1β and IL-8, at the optimal cut-point, excluded VAP with a sensitivity of 100%, a specificity of 44.3% and a post-test probability of 0% (95% CI 0% to 9.2%).
Conclusions: Low BALF IL-1β in combination with IL-8 confidently excludes VAP and could form a rapid biomarker-based rule-out test, with the potential to improve antibiotic stewardship.
Resumo:
The role of proteases in viral infection of the lung is poorly understood. Thus, we examined matrix metalloproteinases (MMPs) and cathepsin proteases in respiratory syncytial virus (RSV)-infected mouse lungs. RSV-induced gene expression for MMPs -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, and -28 and cathepsins B, C, E, G, H, K, L1, S, W, and Z in the airways of Friend leukemia virus B sensitive strain mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β-deficient mice were exposed to RSV. Mavs-deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13, and -28 and cathepsins C, G, K, S, W, and Z. In lung epithelial cells, retinoic acid-inducible gene-1 (RIG-I) was identified as the major RIG-I-like receptor required for RSV-induced protease expression via MAVS. Overexpression of RIG-I or treatment with interferon-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV-infected mice.
Resumo:
Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are important mycotoxins in terms of
human exposure via food, their toxicity and regulatory limits that exist worldwide. Mixtures of toxins can frequently be present in foods, however due to the complications of determining their combined toxicity,
legal limits of exposure are determined for single compounds, based on long standing toxicological
techniques. High content analysis (HCA) may be a useful tool to determine total toxicity of complex
mixtures of mycotoxins. Endpoints including cell number (CN), nuclear intensity (NI), nuclear area (NA),
plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial
mass (MM) were compared to the conventional 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium
bromide (MTT) and neutral red (NR) endpoints in MDBK cells. Individual concentrations of each
mycotoxin (OTA 3mg/ml, FB1 8mg/ml and AFB11.28mg/ml) revealed no cytotoxicity with MTTor NR but
HCA showed significant cytotoxic effects up to 41.6% (p0.001) and 10.1% (p0.05) for OTA and AFB1,
respectively. The tertiary mixture (OTA 3mg/ml, FB1 8mg/ml and AFB1 1.28mg/ml) detected up to 37.3%
and 49.8% more cytotoxicity using HCA over MTT and NR, respectively. Whilst binary combinations of
OTA (3mg/ml) and FB1 (8mg/ml) revealed synergistic interactions using HCA (MMP, MM, NI endpoints)
not detected using MTT or NR. HCA is a highly novel and sensitive tool that could substantially help
determine future regulatory limits, for single and combined toxins present in food, ensuring legislation is based on true risks to human health exposure.
Resumo:
Using microarray information from oro-pharyngeal data sets and results from primary human foreskin keratinocytes (HFK) expressing Human Papilloma Virus (HPV)-16 E6/E7 proteins, we show that p63 expression regulates signalling molecules which initiate cell migration such as Src and focal adhesion kinase (FAK) and induce invasion in 3D-organotypic rafts; a phenotype that can be reversed by depletion of p63. Knockdown of Src or FAK in the invasive cells restored focal adhesion protein paxillin at cell periphery and impaired the cell migration. In addition, specific inhibition of FAK (PF573228) or Src (dasatinib) activities mitigated invasion and attenuated the expression/activity of matrix metalloproteinase 14 (MMP14), a pivotal MMP in the MMP activation cascade. Expression of constitutively active Src in non-invasive HFK expressing E6/E7 proteins upregulated the activity of c-Jun and MMP14, and induced invasion in rafts. Depletion of Src, FAK or AKT in the invasive cells normalised the expression/activity of c-Jun and MMP14, thus implicating the Src-FAK/AKT/AP-1 signalling in MMP14-mediated extra-cellular matrix remodelling. Up-regulation of Src, AP-1, MMP14 and p63 expression was confirmed in oro-pharyngeal cancer. Since p63 transcriptionally regulated expression of many of the genes in this signalling pathway, it suggests that it has a central role in cancer progression.
Resumo:
Purpose of review
Molecular markers for bladder cancer recurrence and
progression continue to drive many research programmes.
Translating the laboratory findings into the clinical environment
where these markers are used in clinical decision making has
proved problematic. In the clinical arena, stage and grade are
still the main focus for decisions about patient management.
There is however an evolution in bladder cancer research from
single-marker/single-pathway research to a more global
assessment of the tumour cell with DNA microarrays and
proteomics.
Recent findings
In the last year, DNA microarray assessment has revealed
several interesting molecular markers such as p33ING1 and
DEK. Parallel ‘conventional’ single-pathway research has
focused on new novel markers such as HER2/neu, survivin and
matrix metalloproteinase 2 (MMP-2). Molecular markers that
have a long-standing association with bladder cancer
progression such as p53, E-cadherin and Ki-67 have been
reviewed by both single-marker studies and by microarray
studies and their status remains important.
Summary
It is an exciting time in the molecular biology research of bladder
cancer as the focus changes to assess the global genetic and
protein expression within tumour cells. From such a wealth of
information it is likely that molecular markers will make the
translation from benchside to bedside.
Resumo:
Mycotoxins and heavy metals are ubiquitous in the environment and contaminate many foods. The widespread use of pesticides in crop production to control disease contributes further to the chemical contamination of foods. Thus multiple chemical contaminants threaten the safety of many food commodities; hence the present study used maize as a model crop to identify the severity in terms of human exposure when multiple contaminants are present. High Content Analysis (HCA) measuring multiple endpoints was used to determine cytotoxicity of complex mixtures of mycotoxins, heavy metals and pesticides. Endpoints included nuclear intensity (NI), nuclear area (NA), plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial mass (MM). At concentrations representing legal limits of each individual contaminant in maize (3. ng/ml ochratoxin A (OTA), 1. μg/ml fumonisin B1 (FB1), 2. ng/ml aflatoxin B1 (AFB1), 100. ng/ml cadmium (Cd), 150. ng/ml arsenic (As), 50. ng/ml chlorpyrifos (CP) and 5. μg/ml pirimiphos methyl (PM), the mixtures (tertiary mycotoxins plus Cd/As) and (tertiary mycotoxins plus Cd/As/CP/PM) were cytotoxic for NA and MM endpoints with a difference of up to 13.6% (. p≤. 0.0001) and 12% (. p≤. 0.0001) respectively from control values. The most cytotoxic mixture was (tertiary mycotoxins plus Cd/As/CP/PM) across all 4 endpoints (NA, NI, MM and MMP) with increases up to 61.3%, 23.0%, 61.4% and 36.3% (. p≤. 0.0001) respectively. Synergy was evident for two endpoints (NI and MM) at concentrations contaminating maize above legal limits, with differences between expected and measured values of (6.2-12.4% (. p≤. 0.05-. p≤. 0.001) and 4.5-12.3% (. p≤. 0.05-. p≤. 0.001) for NI and MM, respectively. The study introduces for the first time, a holistic approach to identify the impact in terms of toxicity to humans when multiple chemical contaminants are present in foodstuffs. Governmental regulatory bodies must begin to contemplate how to safeguard the population when such mixtures of contaminants are found in foods and this study starts to address this critical issue.
Resumo:
Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POP were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p'-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2h and 48h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced the ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC+Br mixture. No significant effects were detected in the Br+Cl, PFC+Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment.
Resumo:
Introduction: As a result of chronic inflammation during periodontal disease the junctional epithelium becomes micro-ulcerated. The inflammatory process is mediated by both bacterial and host cell products. Host defence peptides such as defensins, secretory leucocyte protease inhibitor (SLPI) and the sole human cathelicidin, LL-37, are secreted by both periodontal cells and neutrophils into gingival crevicular fluid (GCF). They have the ability to modulate the immune response in periodontitis and are thought to have a potential role in periodontal wound healing. Objectives: The aims of this study were to determine the role of LL-37 in the production of Interleukin (IL)-8, IL-6, hepatocyte growth factor (HGF) and basic-fibroblast growth factor (bFGF) by gingival fibroblasts. The role of LL-37 in modulating total matrix metalloproteinase (MMP) activity and expression of tissue inhibitors of metalloproteinase (TIMP)-1 and -2 by gingival fibroblasts was also investigated. Methods: Primary gingival fibroblasts were co-cultured with concentrations of LL-37 (1, 5 and 10µg/ml) for 24 hours and their supernatants tested for levels of IL-8 and IL-6, HGF, bFGF, TIMP-1 and TIMP-2 by ELISA. Rates of MMP turnover in the supernatants were tested by fluorogenic assay using fluorescence resonance energy transfer (FRET) peptide substrates. Cytotoxicity was measured by MTT assay. Statistical significance was measured using the independent t-test and p<0.05 was considered significant. Results: LL-37 significantly upregulated levels of IL-8, IL-6, HGF, bFGF and TIMP-1 (p<0.05) in a dose-dependent fashion. LL-37 significantly decreased the total MMP activity (p<0.05). None of the LL-37 concentrations tested were cytotoxic to gingival fibroblasts. Conclusion: These results indicate that LL-37 is involved in periodontal wound healing. LL-37 increased levels of proinflammatory cytokines and increased levels of growth factors involved in re-epithelialisation. LL-37 has the ability to regulate remodelling of the periodontium by controlling MMP overactivity both directly and by stimulating production of inhibitors by gingival fibroblasts.
Resumo:
BACKGROUND: Glucagon-like peptide-1 (GLP-1) therapies are routinely used for glycaemic control in diabetes and their emerging cardiovascular actions have been a major recent research focus. In addition to GLP-1 receptor activation, the metabolically-inactive breakdown product, GLP-1(9-36)amide, also appears to exert notable cardiovascular effects, including protection against acute cardiac ischaemia. Here, we specifically studied the influence of GLP-1(9-36)amide on chronic post-myocardial infarction (MI) remodelling, which is a major driver of heart failure progression.
METHODS: Adult female C57BL/6 J mice were subjected to permanent coronary artery ligation or sham surgery prior to continuous infusion with GLP-1(9-36)amide or vehicle control for 4 weeks.
RESULTS: Infarct size was similar between groups with no effect of GLP-1(9-36)amide on MI-induced cardiac hypertrophy, although modest reduction of in vitro phenylephrine-induced H9c2 cardiomyoblast hypertrophy was observed. Whilst echocardiographic systolic dysfunction post-MI remained unchanged, diastolic dysfunction (decreased mitral valve E/A ratio, increased E wave deceleration rate) was improved by GLP-1(9-36)amide treatment. This was associated with modulation of genes related to extracellular matrix turnover (MMP-2, MMP-9, TIMP-2), although interstitial fibrosis and pro-fibrotic gene expression were unaltered by GLP-1(9-36)amide. Cardiac macrophage infiltration was also reduced by GLP-1(9-36)amide together with pro-inflammatory cytokine expression (IL-1β, IL-6, MCP-1), whilst in vitro studies using RAW264.7 macrophages revealed global potentiation of basal pro-inflammatory and tissue protective cytokines (e.g. IL-1β, TNF-α, IL-10, Fizz1) in the presence of GLP-1(9-36)amide versus exendin-4.
CONCLUSIONS: These data suggest that GLP-1(9-36)amide confers selective protection against post-MI remodelling via preferential preservation of diastolic function, most likely due to modulation of infiltrating macrophages, indicating that this often overlooked GLP-1 breakdown product may exert significant actions in this setting which should be considered in the context of GLP-1 therapy in patients with cardiovascular disease.