548 resultados para Lipschitz, Funcions de
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
[eng] In the context of cooperative TU-games, and given an order of players, we consider the problem of distributing the worth of the grand coalition as a sequentia decision problem. In each step of process, upper and lower bounds for the payoff of the players are required related to successive reduced games. Sequentially compatible payoffs are defined as those allocation vectors that meet these recursive bounds. The core of the game is reinterpreted as a set of sequentally compatible payoffs when the Davis-Maschler reduced game is considered (Th.1). Independently of the reduction, the core turns out to be the intersections of the family of the sets of sequentially compatible payoffs corresponding to the different possible orderings (Th.2), so it is in some sense order-independent. Finally, we analyze advantagenous properties for the first player
Resumo:
A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Greens function approach. The method provides a very efficient representation of the single-particle Greens function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O.
Resumo:
The existence of a liquid-gas phase transition for hot nuclear systems at subsaturation densities is a well-established prediction of finite-temperature nuclear many-body theory. In this paper, we discuss for the first time the properties of such a phase transition for homogeneous nuclear matter within the self-consistent Green's function approach. We find a substantial decrease of the critical temperature with respect to the Brueckner-Hartree-Fock approximation. Even within the same approximation, the use of two different realistic nucleon-nucleon interactions gives rise to large differences in the properties of the critical point.
Resumo:
The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v2 central interaction which is derived from Reid¿s soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei.
Resumo:
A modified Bargmann-Wigner method is used to derive (6s + 1)-component wave equations. The relation between different forms of these equations is shown.
Resumo:
The Newton-Hooke algebras in d dimensions are constructed as contractions of dS(AdS) algebras. Nonrelativistic brane actions are WZ terms of these Newton-Hooke algebras. The NH algebras appear also as subalgebras of multitemporal relativistic conformal algebras, SO(d+1,p+2). We construct generalizations of pp-wave metrics from these algebras.
Resumo:
For a few years now, the study of quantum field theories in partially compactified space-time manifolds has acquired increasing importance in several domains of quantum physics. Let me just mention the issues of dimensional reduction and spontaneous compactification, and the multiple questions associated with the study of quantum field theories in the presence of boundaries (like the Casimir effect) and on curved space-time (manifolds with curvature and nontrivial topology), a step towards quantum gravity.
Resumo:
A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.
Resumo:
The tunneling approach to the wave function of the Universe has been recently criticized by Bousso and Hawking who claim that it predicts a catastrophic instability of de Sitter space with respect to pair production of black holes. We show that this claim is unfounded. First, we argue that different horizon size regions in de Sitter space cannot be treated as independently created, as they contend. And second, the WKB tunneling wave function is not simply the inverse of the Hartle-Hawking one, except in very special cases. Applied to the related problem of pair production of massive particles, we argue that the tunneling wave function leads to a small constant production rate, and not to a catastrophe as the argument of Bousso and Hawking would suggest.