975 resultados para LIDAR
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application specific evolutionary algorithm (EA) implemented entirely on a field programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, compliments it to be an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and three-dimensional terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment and mission profiles. The architecture has been successfully synthesised for a target Xilinx Virtex-4 FPGA platform with 32% logic slices utilisation. Results obtained from case studies for a small UAV helicopter with environment derived from LIDAR (Light Detection and Ranging) data verify the effectiveness of the proposed FPGA-based path planner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.
Resumo:
This paper describes a novel method for determining the extrinsic calibration parameters between 2D and 3D LIDAR sensors with respect to a vehicle base frame. To recover the calibration parameters we attempt to optimize the quality of a 3D point cloud produced by the vehicle as it traverses an unknown, unmodified environment. The point cloud quality metric is derived from Rényi Quadratic Entropy and quantifies the compactness of the point distribution using only a single tuning parameter. We also present a fast approximate method to reduce the computational requirements of the entropy evaluation, allowing unsupervised calibration in vast environments with millions of points. The algorithm is analyzed using real world data gathered in many locations, showing robust calibration performance and substantial speed improvements from the approximations.
Resumo:
The chief challenge facing persistent robotic navigation using vision sensors is the recognition of previously visited locations under different lighting and illumination conditions. The majority of successful approaches to outdoor robot navigation use active sensors such as LIDAR, but the associated weight and power draw of these systems makes them unsuitable for widespread deployment on mobile robots. In this paper we investigate methods to combine representations for visible and long-wave infrared (LWIR) thermal images with time information to combat the time-of-day-based limitations of each sensing modality. We calculate appearance-based match likelihoods using the state-of-the-art FAB-MAP [1] algorithm to analyse loop closure detection reliability across different times of day. We present preliminary results on a dataset of 10 successive traverses of a combined urban-parkland environment, recorded in 2-hour intervals from before dawn to after dusk. Improved location recognition throughout an entire day is demonstrated using the combined system compared with methods which use visible or thermal sensing alone.
Resumo:
Flood related scientific and community-based data are rarely systematically collected and analysed in the Philippines. Over the last decades the Pagsangaan River Basin, Leyte, has experienced several flood events. However, documentation describing flood characteristics such as extent, duration or height of these floods are close to non-existing. To address this issue, computerized flood modelling was used to reproduce past events where there was data available for at least partial calibration and validation. The model was also used to provide scenario-based predictions based on A1B climate change assumptions for the area. The most important input for flood modelling is a Digital Elevation Model (DEM) of the river basin. No accurate topographic maps or Light Detection And Ranging (LIDAR)-generated data are available for the Pagsangaan River. Therefore, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM), Version 1, was chosen as the DEM. Although the horizontal spatial resolution of 30 m is rather desirable, it contains substantial vertical errors. These were identified, different correction methods were tested and the resulting DEM was used for flood modelling. The above mentioned data were combined with cross-sections at various strategic locations of the river network, meteorological records, river water level, and current velocity to develop the 1D-2D flood model. SOBEK was used as modelling software to create different rainfall scenarios, including historic flooding events. Due to the lack of scientific data for the verification of the model quality, interviews with local stakeholders served as the gauge to judge the quality of the generated flood maps. According to interviewees, the model reflects reality more accurately than previously available flood maps. The resulting flood maps are now used by the operations centre of a local flood early warning system for warnings and evacuation alerts. Furthermore these maps can serve as a basis to identify flood hazard areas for spatial land use planning purposes.
Resumo:
This paper addresses the problem of automatically estimating the relative pose between a push-broom LIDAR and a camera without the need for artificial calibration targets or other human intervention. Further we do not require the sensors to have an overlapping field of view, it is enough that they observe the same scene but at different times from a moving platform. Matching between sensor modalities is achieved without feature extraction. We present results from field trials which suggest that this new approach achieves an extrinsic calibration accuracy of millimeters in translation and deci-degrees in rotation.
Resumo:
Aerial inspection of pipelines, powerlines, and other large linear infrastructure networks has emerged in a number of civilian remote sensing applications. Challenges relate to automating inspection flight for under-actuated aircraft with LiDAR/camera sensor constraints whilst subjected to wind disturbances. This paper presents new improved turn planning strategies with guidance suitable for automation of linear infrastructure inspection able to reduce inspection flight distance by including wind information. Simulation and experimental flight tests confirmed the flight distance saving, and the proposed guidance strategies exhibited good tracking performance in a range of wind conditions.
Resumo:
Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.
Resumo:
Fusing data from multiple sensing modalities, e.g. laser and radar, is a promising approach to achieve resilient perception in challenging environmental conditions. However, this may lead to \emph{catastrophic fusion} in the presence of inconsistent data, i.e. when the sensors do not detect the same target due to distinct attenuation properties. It is often difficult to discriminate consistent from inconsistent data across sensing modalities using local spatial information alone. In this paper we present a novel consistency test based on the log marginal likelihood of a Gaussian process model that evaluates data from range sensors in a relative manner. A new data point is deemed to be consistent if the model statistically improves as a result of its fusion. This approach avoids the need for absolute spatial distance threshold parameters as required by previous work. We report results from object reconstruction with both synthetic and experimental data that demonstrate an improvement in reconstruction quality, particularly in cases where data points are inconsistent yet spatially proximal.
Resumo:
The visual characteristics of urban environments have been changing dramatically with the growth of cities around the world. Protection and enhancement of landscape character in urban environments have been one of the challenges for policy makers in addressing sustainable urban growth. Visual openness and enclosure in urban environments are important attributes in perception of visual space which affect the human interaction with physical space and which can be often modified by new developments. Measuring visual openness in urban areas results in more accurate, reliable, and systematic approach to manage and control visual qualities in growing cities. Recent advances in techniques in geographic information systems (GIS) and survey systems make it feasible to measure and quantify this attribute with a high degree of realism and precision. Previous studies in this field do not take full advantage of these improvements. This paper proposes a method to measure the visual openness and enclosure in a changing urban landscape in Australia, on the Gold Coast, by using the improved functionality in GIS. Using this method, visual openness is calculated and described for all publicly accessible areas in the selected study area. A final map is produced which shows the areas with highest visual openness and visibility to natural landscape resources. The output of this research can be used by planners and decision-makers in managing and controlling views in complex urban landscapes. Also, depending on the availability of GIS data, this method can be applied to any region including non-urban landscapes to help planners and policy-makers manage views and visual qualities.
Resumo:
The Ozone Monitoring Instrument (OMI) aboard EOS-Aura and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS-Aqua fly in formation as part of the A-train. Though OMI retrieves aerosol optical depth (AOD) and aerosol absorption, it must assume aerosol layer height. The MODIS cannot retrieve aerosol absorption, but MODIS aerosol retrieval is not sensitive to aerosol layer height and with its smaller pixel size is less affected by subpixel clouds. Here we demonstrate an approach that uses MODIS-retrieved AOD to constrain the OMI retrieval, freeing OMI from making an a priori estimate of aerosol height and allowing a more direct retrieval of aerosol absorption. To predict near-UV optical depths using MODIS data we rely on the spectral curvature of the MODIS-retrieved visible and near-IR spectral AODs. Application of an OMI-MODIS joint retrieval over the north tropical Atlantic shows good agreement between OMI and MODIS-predicted AODs in the UV, which implies that the aerosol height assumed in the OMI-standard algorithm is probably correct. In contrast, over the Arabian Sea, MODIS-predicted AOD deviated from the OMI-standard retrieval, but combined OMI-MODIS retrievals substantially improved information on aerosol layer height (on the basis of validation against airborne lidar measurements). This implies an improvement in the aerosol absorption retrieval, but lack of UV absorption measurements prevents a true validation. Our study demonstrates the potential of multisatellite analysis of A-train data to improve the accuracy of retrieved aerosol products and suggests that a combined OMI-MODIS-CALIPSO retrieval has large potential to further improve assessments of aerosol absorption.
Resumo:
Simultaneous and collocated measurements of total and hemispherical backscattering coefficients (σ and β, respectively) at three wavelengths, mass size distributions, and columnar spectral aerosol optical depth (AOD) were made onboard an extensive cruise experiment covering, for the first time, the entire Bay of Bengal (BoB) and northern Indian Ocean. The results are synthesized to understand the optical properties of aerosols in the marine atmospheric boundary layer and their dependence on the size distribution. The observations revealed distinct spatial and spectral variations of all the aerosol parameters over the BoB and the presence of strong latitudinal gradients. The size distributions varied spatially, with the majority of accumulation modes decreasing from north to south. The scattering coefficient decreased from very high values (resembling those reported for continental/urban locations) in the northern BoB to very low values seen over near-pristine environments in the southeastern BoB. The average mass scattering efficiency of BoB aerosols was found to be 2.66 ± 0.1 m2 g−1 at 550 nm. The spectral dependence of columnar AOD deviated significantly from that of the scattering coefficients in the northern BoB, implying vertical heterogeneity in the aerosol type in that region. However, a more homogeneous scenario was observed in the southern BoB. Simultaneous lidar and in situ measurements onboard an aircraft over the ocean revealed the presence of elevated aerosol layers of enhanced extinction at altitudes of 1 to 3 km with an offshore extent of a few hundred kilometers. Back-trajectory analyses showed these layers to be associated with advection from west Asia and western India. The large spatial variations and vertical heterogeneity in aerosol properties, revealed by the present study, need to be included in the regional radiative forcing over the Bay of Bengal.
Resumo:
Tasaikäisen metsän alle muodostuvilla alikasvoksilla on merkitystä puunkorjuun, metsänuudistamisen, näkemä-ja maisema-analyysien sekä biodiversiteetin ja hiilitaseen arvioinnin kannalta. Ilma-aluksista tehtävä laserkeilaus on osoittautunut tehokkaaksi kaukokartoitusmenetelmäksi varttuneiden puustojen mittauksessa. Laserkeilauksen käyttöönotto operatiivisessa metsäsuunnittelussa mahdollistaa aiempaa tarkemman tiedon tuottamisen alikasvoksista, mikäli alikasvoksen ominaisuuksia voidaan tulkita laseraineistoista. Tässä työssä käytettiin tarkasti mitattuja maastokoealoja ja kaikulaserkeilausaineistoja (discrete return LiDAR) usealta vuodelta (1–2 km lentokorkeus, 0,9–9,7 pulssia m-2). Laserkeilausaineistot oli hankittu Optech ALTM3100 ja Leica ALS50-II sensoreilla. Koealat edustavat suomalaisia tasaikäisiä männiköitä eri kehitysvaiheissa. Tutkimuskysymykset olivat: 1) Minkälainen on alikasvoksesta saatu lasersignaali yksittäisen pulssin tasolla ja mitkä tekijät signaaliin vaikuttavat? 2) Mikä on käytännön sovelluksissa hyödynnettävien aluepohjaisten laserpiirteiden selitysvoima alikasvospuuston ominaisuuksien ennustamisessa? Erityisesti haluttiin selvittää, miten laserpulssin energiahäviöt ylempiin latvuskerroksiin vaikuttavat saatuun signaaliin, ja voidaanko laserkaikujen intensiteetille tehdä energiahäviöiden korjaus. Puulajien väliset erot laserkaiun intensiteetissä olivat pieniä ja vaihtelivat keilauksesta toiseen. Intensiteetin käyttömahdollisuudet alikasvoksen puulajin tulkinnassa ovat siten hyvin rajoittuneet. Energiahäviöt ylempiin latvuskerroksiin aiheuttivat alikasvoksesta saatuun lasersignaaliin kohinaa. Energiahäviöiden korjaus tehtiin alikasvoksesta saaduille laserpulssin 2. ja 3. kaiuille. Korjauksen avulla pystyttiin pienentämään kohteen sisäistä intensiteetin hajontaa ja parantamaan kohteiden luokittelutarkkuutta alikasvoskerroksessa. Käytettäessä 2. kaikuja oikeinluokitusprosentti luokituksessa maan ja yleisimmän puulajin välillä oli ennen korjausta 49,2–54,9 % ja korjauksen jälkeen 57,3–62,0 %. Vastaavat kappa-arvot olivat 0,03–0,13 ja 0,10–0,22. Tärkein energiahäviöitä selittävä tekijä oli pulssista saatujen aikaisempien kaikujen intensiteetti, mutta hieman merkitystä oli myös pulssin leikkausgeometrialla ylemmän latvuskerroksen puiden kanssa. Myös 3. kaiuilla luokitustarkkuus parani. Puulajien välillä havaittiin eroja siinä, kuinka herkästi ne tuottavat kaiun laserpulssin osuessa puuhun. Kuusi tuotti kaiun suuremmalla todennäköisyydellä kuin lehtipuut. Erityisen selvä tämä ero oli pulsseilla, joissa oli energiahäviöitä. Laserkaikujen korkeusjakaumapiirteet voivat siten olla riippuvaisia puulajista. Sensorien välillä havaittiin selviä eroja intensiteettijakaumissa, mikä vaikeuttaa eri sensoreilla hankittujen aineistojen yhdistämistä. Myös kaiun todennäköisyydet erosivat jonkin verran sensorien välillä, mikä aiheutti pieniä eroavaisuuksia kaikujen korkeusjakaumiin. Aluepohjaisista laserpiirteistä löydettiin alikasvoksen runkolukua ja keskipituutta hyvin selittäviä piirteitä, kun rajoitettiin tarkastelu yli 1 m pituisiin puihin. Piirteiden selitysvoima oli parempi runkoluvulle kuin keskipituudelle. Selitysvoima ei merkittävästi alentunut pulssitiheyden pienentyessä, mikä on hyvä asia käytännön sovelluksia ajatellen. Lehtipuun osuutta ei pystytty selittämään. Tulosten perusteella kaikulaserkeilausta voi olla mahdollista hyödyntää esimerkiksi ennakkoraivaustarpeen arvioinnissa. Sen sijaan alikasvoksen tarkempi luokittelu (esim. puulajitulkinta) voi olla vaikeaa. Kaikkein pienimpiä alikasvospuita ei pystytä havaitsemaan. Lisää tutkimuksia tarvitaan tulosten yleistämiseksi erilaisiin metsiköihin.
Resumo:
Systematic observations of light detection and ranging (LIDAR) to detect elevated aerosol layer were carried out at Manora Peak (29.4 degrees N, 79.5 degrees E, similar to 1960 m a.s.l), Nainital, in the Central Himalayas during January-May 2008. In spite of being a remote, high-altitude site, an elevated aerosol layer is observed quite frequently in the altitude range of 2460-4460 m a.s.l with a width of similar to 2 km during the observation period. We compare these profiles with the vertical profiles observed over Gadanki (13.5 degrees N, 79.2 degrees E, similar to 370 m a.s.l), a tropical station, where no such elevated aerosol layer was found. Further, there is a steady increase in aerosol optical depth (AOD) from January (winter) to May (summer) from 0.043 to 0.742, respectively, at Manora Peak, indicating aerosol loading in the atmosphere. Our observations show north-westerly winds indicating the convective lifting of aerosols from far-off regions followed by horizontal long-range transport. The presence of strongly absorbing and scattering aerosols in the elevated layer resulted in a relatively large diurnal mean aerosol surface radiative forcing efficiency (forcing per unit optical depth) of about -65 and -63 W m(-2) and the corresponding mean reduction in the observed net solar flux at the surface (cooling effect) is as high as -22 and -30 W m(-2). The reduction of radiation will heat the lower atmosphere by redistributing the radiation with heating rate of 1.13 and 1.31 K day(-1) for April and May 2008, respectively, in the lower atmosphere.
Resumo:
Recent studies, over regions influenced by biomass burning aerosol, have shown that it is possible to define a critical cloud fraction' (CCF) at which the aerosol direct radiative forcing switch from a cooling to a warming effect. Using 4 years of multi-satellite data analysis, we show that CCF varies with aerosol composition and changed from 0.28 to 0.13 from postmonsoon to winter as a result of shift from less absorbing to moderately absorbing aerosol. Our results indicate that we can estimate aerosol absorption from space using independently measured top of the atmosphere (TOA) fluxes Cloud Aerosol Lidar with Orthogonal Polarization-Moderate resolution Imaging Spectroradiometer-Clouds and the Earth's Radiant Energy System (CALIPSO-MODIS-CERES)] combined algorithms for example.