960 resultados para LATERAL GENICULATE-NUCLEUS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is conflicting evidence concerning the role of the bed nucleus of the stria terminalis (BNST) in fear and anxiety-elicited behavior. Most of the studies investigating this role, however, employed irreversible lesions of this nucleus. The objective of the present study was to investigate the effects of an acute and reversible inactivation of the BNST in rats submitted to the Vogel conflict test (VCT) and contextual fear conditioning, two widely employed animal models that are responsive to prototypal anxiolytic drugs. Male Wistar rats were submitted to stereotaxic surgery to bilaterally implant cannulae into the BNST. Ten minutes before the test they received bilateral microinjections of cobalt chloride (COCl(2)) (1 mM/100 nL), a nonselective synapse blocker. COCl(2) produced anxiolytic-like effects in tests, increasing the number of punished licks in the VCT and decreasing freezing behavior and the increase in mean arterial blood pressure and heart rate of animals re-exposed to the context where they had received electrical foot shocks 24 h before. The results indicate that the BNST is engaged in behavioral responses elicited by punished stimuli and aversively conditioned contexts, reinforcing its proposed role in anxiety. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous findings point to the involvement of the dorsal raphe nucleus (DRN) and dorsal periaqueductal gray (dPAG) serotonergic receptors in the mediation of defensive responses that are associated with specific subtypes of anxiety disorders. These studies have mostly been conducted with rats tested in the elevated T-maze, an experimental model of anxiety that was developed to allow the measurement, in the same animal, of two behaviors mentioned: inhibitory avoidance and one-way escape. Such behavioral responses have been respectively related to generalized anxiety disorder (GAD) and panic disorder (PD). In order to assess the generality of these findings, in the current study we investigated the effects of the injection of 5-HT-related drugs into the DRN and dPAG of another rodent species, mouse, on the mouse defense test battery (MDTB), a test of a range of defensive behaviors to an unconditioned threat, a predator. Male CD-1 mice were tested in the MDTB after intra-DRN administration of the 5-HT(1A) receptor antagonist WAY-100635 or after intra-dPAG injection of two serotonergic agonists, the 5-HT1A receptor agonist 8-OH-DPAT and the 5-HT(2A/2C) receptor agonist DOI. Intra-DRN injection of WAY-100635 did not change behavioral responses of mice confronted with a rat in the MDTB. In the dPAG, both 8-OH-DPAT and DOI consistently impaired mouse escape behavior assessed in the MDTB. Intra-dPAG infusion of 8-OH-DPAT also decreased measures of mouse risk assessment in the rat exposure test. In conclusion, the current findings are in partial agreement with previous results obtained with rats tested in the elevated T-maze. Although there is a high level of similarity between the behavioral effects obtained in rats (elevated T-maze) and mice (MDTB and RET) with the infusion of 5-HT agonists into the dPAG, the same is not true regarding the effects of blockade of DRN 5-HT(1A) receptors in these rodent species. These data suggest that there may be differences between mice and rats regarding the involvement of the DRN in the mediation of defensive behaviors. (C) 2010 Elsevier B.V. and ECNP. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: We have previously shown that noradrenaline microinjected into the bed nucleus of stria terminalis (BST) elicited pressor and bradycardiac responses in unanaesthetized rats. In the present study, we investigated the subtype of adrenoceptors that mediates the cardiovascular response to noradrenaline microinjection into the BST. Experimental approach: Cardiovascular responses following noradrenaline microinjection into the BST of male Wistar rats were studied before and after BST pretreatment with different doses of the selective alpha(1)-adrenoceptor antagonist WB4101, the alpha(2)-adrenoceptor antagonist RX821002, the combination of WB4101 and RX821002, the non-selective beta-adrenoceptor antagonist propranolol, the selective beta(1)-adrenoceptor antagonist CGP20712 or the selective beta(2)-adrenoceptor antagonist ICI118,551. Key results: Noradrenaline microinjected into the BST of unanaesthetized rats caused pressor and bradycardiac responses. Pretreatment of the BST with different doses of either WB4101 or RX821002 only partially reduced the response to noradrenaline. However, the response to noradrenaline was blocked when WB4101 and RX821002 were combined. Pretreatment with this combination also shifted the resulting dose-effect curve to the left, clearly showing a potentiating effect of this antagonist combination. Pretreatment with different doses of either propranolol or CGP20712 increased the cardiovascular responses to noradrenaline microinjected into the BST. Pretreatment with ICI118,551 did not affect cardiovascular responses to noradrenaline. Conclusion and implications: The present results indicate that alpha(1) and alpha(2)-adrenoceptors mediate the cardiovascular responses to noradrenaline microinjected into the BST. In addition, they point to an inhibitory role played by the activation of local beta(1)-adrenoceptors in the cardiovascular response to noradrenaline microinjected into the BST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic administration of cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, attenuates the cardiovascular and behavioral responses to restraint stress. Although the brain structures related to CBD effects are not entirely known, they could involve brainstem structures responsible for cardiovascular control. Therefore, to investigate this possibility the present study verified the effects of CBD (15.30 and 60 nmol) injected into the cisterna magna on the autonomic and behavioral changes induced by acute restraint stress. During exposure to restraint stress (1 h) there was a significant increase in mean arterial pressure (MAP) and heart rate (HR). Also, 24 h later the animals showed a decreased percentage of entries onto the open arms of the elevated plus-maze. These effects were attenuated by CBD (30 nmol). The drug had no effect on MAP and HR baseline values. These results indicate that intracisternal administration of CBD can attenuate autonomic responses to stress. However, since CBD decreased the anxiogenic consequences of restraint stress, it is possible that the drug is also acting on forebrain structures. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that regular physical exercise alter cardiac function and autonomic modulation of heart rate variability (HRV). The paraventricular nucleus of hypothalamus (PVN) is an important site of integration for autonomic and cardiovascular responses, where nitric oxide (NO) plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after nitric oxide synthase (NOS) inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After swimming training protocol, adult male Wistar rats, instrumented with guide cannulas to PVN and femoral artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, the physical training induced a resting bradycardia (S: 374 +/- 5, ST: 346 +/- 1 bpm) and promoted adaptations in HRV characterized by an increase in high-frequency oscillations (HF; 26.43 +/- 6.91 to 88.96 +/- 244) and a decrease in low-frequency oscillations (LF; 73.57 +/- 6.91 to 11.04 +/- 2.44) in normalized units. The microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the PVN of sedentary and trained rats promoted increase in MAP and HR. L-NAME in the PVN did not significantly alter the spectral parameters of HRV of sedentary animals, however in the trained rats increased LF oscillations (11.04 +/- 2.44 to 27.62 +/- 6.97) and decreased HF oscillations (88.96 +/- 2.44 to 72.38 +/- 6.97) in normalized units compared with baseline. Our results suggest that NO in the PVN may collaborate to cardiac autonomic modulation after exercise training. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic-like effects in rodents and humans after systemic administration. Previous results from our group showed that CBD injection into the bed nucleus of the stria terminalis (BNST) attenuates conditioned aversive responses. The aim of this study was to further investigate the role of this region on the anxiolytic effects of the CBD. Moreover, considering that CBD can activate 5-HT1A receptors, we also verified a possible involvement of these receptors in those effects. Male Wistar rats received injections of CBD (15, 30, or 60 nmol) into the BNST and were exposed to the elevated plus-maze (EPM) or to the Vogel conflict test (VCT), two widely used animal models of anxiety. CBD increased open arms exploration in the EPM as well as the number of punished licks in the VCT, suggesting an anxiolytic-like effect. The drug did not change the number of entries into the enclosed arms of the EPM nor interfered with water consumption or nociceptive threshold, discarding potential confounding factors in the two tests. Moreover, pretreatment with the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) blocked the effects of CBD in both models. These results give further support to the proposal that BNST is involved in the anxiolytic-like effects of CBD observed after systemic administration, probably by facilitating local 5-HT1A receptor-mediated neurotransmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous evidence has shown that facilitation of GABA/benzodiazepine-mediated neurotransmission in the ventromedial hypothalamus (VMH) inhibits both escape and inhibitory avoidance responses generated in the elevated T-maze test of anxiety (ETM). These defensive behaviors have been associated with panic and generalized anxiety, respectively. Aside from GABA/benzodiazepine receptors, the VMH also contains a significant number of serotonin (5-HT) receptors, including 1A, 2A and 2C subtypes. The purpose of the present study was to investigate the effect of the activation of 5-HT(1A) and 5-HT(2A/2C) receptors in the VMH on defensive behavioral responses in rats submitted to the ETM. For that, male Wistar rats were treated intra-VMH with the 5-HT(1A) agonist 8-OH-DPAT, with the 5-HT(2A/2C) agonist DOI, with the 5-HT(2C) selective agonist MK-212, or with the 5-HT(2A/2C) antagonist ketanserin and 10 min after were submitted to the ETM. Results showed that both DOI and MK-212 significantly decreased avoidance measurements, an anxiolytic-like effect, without altering escape. 8-OH-DPAT and ketanserin were without effect, although the last drug attenuated the effects of DOI. None of the drugs altered locomotor activity in an open field. These results suggest that 5-HT(2A/2C) receptors of the VMH are involved in the regulation of inhibitory avoidance and might be of relevance to the physiopathology of generalized anxiety. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paraventricular nucleus of the hypothalamus (PVN) has been implicated in several aspects of neuroendocrine and cardiovascular control The PVN contains parvocellular neurons that release the corticotrophin release ha mone (CRH) under stress situations In addition this brain area is connected to several limbic structures implicated in defensive behavioral control as well to forebrain and brainst m structures involved in cardiovascular control Acute restraint is an unavoidable stress situation that evokes corticosterone release as well as marked autonomic changes the latter characterized by elevated mean arterial pressure (MAP) intense heart rate (HR) Increases and decrease in the tail temperature We report the effect of PVN inhibition on MAP and HR responses corticosterone plasma levels and tail temperature response during acute restraint in rats Bilateral microinjection of the nonspecific synaptic blocker CoCl(2) (1 mM/100 nL) into the PVN reduced the pressor response it inhibited the increase in plasma corticosterone concentration as well as the fall in tail temperature associated with acute restraint stress Moreover bilateral microinjection of CoCl(2) into areas surrounding the PVN did not affect the blood pressure hormonal and tail vasoconstriction responses to restraint stress The present results show that a local PVN neurotransmission is involved in the neural pathway that controls autonomic and neuroendocrine responses which are associated with the exposure to acute restraint stress (C) 2010 Elsevier B V All rights reservi.d

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) evokes escape, a defensive behavior that has been related to panic attacks. Injection of 5-HT(1A) or 5-HT(2A) receptor agonists into this midbrain area inhibits this response. It has been proposed that the impairment of 5-HT mechanisms controlling escape at the level of the DPAG may underlie the susceptibility to panic attacks that characterizes the panic disorder. In this study we evaluated the effects of the pharmacological manipulation of the dorsal raphe nucleus (DRN), which are the main source of 5-HT input to the DPAG, on the escape response evoked in rats by the intra-DPAG injection of the nitric oxide donor SIN-1. The results showed that DRN administration of the 5-HT(1A) receptor agonist 8-OH-DPAT which inhibits the activity of 5-HT neurons favored the expression of escape induced by SIN-1. Intra-DRN injection of the excitatory amino acid kainic acid or the 5-HT(1A) receptor antagonist WAY-100635 did not change escape expression. However, both compounds fully blocked the escape reaction generated by intra-DPAG injection of the excitatory amino acid D,L-homocysteic acid (DLH). Overall, the results indicate that 5-HT neurons in the DRN exert a bidirectional control upon escape behavior generated by the DPAG. Taking into account the effect of WAY-100635 on DLH-induced escape, they also strengthen the view that DRN 5-HT(1A) autoreceptors are under tonic inhibitory influence by 5-HT. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a non-psychotomimetic constituent of the Cannabis sativa plant that inhibits behavioral and cardiovascular responses to aversive situations. facilitating 5-HT(1A)-mediated neurotransmission. Previous results from our group suggest that the bed nucleus of the stria terminalis (BNST) may be involved in CBD`s anti-aversive effects. To investigate whether the cardiovascular effects of the CBD could involve a direct drug effect on the BNST, we evaluated the effects of CBD microinjection into this structure on baroreflex activity. We also verified whether these effects were mediated by the activation of 5-HT(1A) receptors. Bilateral microinjection of CBD (60 nmol/100 nL) into the BNST increased the bradycardiac response to arterial pressure increases. However, no changes were observed in tachycardiac responses evoked by arterial pressure decreases. Pretreatment of the BNST with the selective 5-HT(1A) receptor antagonist WAY100635 (0.37 nmol/100 nL) prevented CBD effects on the baroreflex activity. Moreover, microinjection of the 5-HT(1A) receptor agonist 8-OH-DPAT (4 nmol/100 nL) caused effects that were similar to those observed after the microinjection of CBD, which were also blocked by pretreatment with WAY100635. In conclusion, the present studies show that the microinjection of CBD into the BNST has a facilitatory influence on the baroreflex response to blood pressure increases, acting through the activation of 5-HT(1A) receptors. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the evidence that the lateral septal area (LSA) modulates defensive responses, the aim of the present study is to verify if this structure is also involved in contextual fear conditioning responses. Neurotransmission in the LSA was reversibly inhibited by bilateral microinjections of cobalt chloride (CoCl(2), 1 mM) 10 min before or after conditioning or 10 min before re-exposure to the aversively conditioned chamber. Only those animals that received CoCl(2) before re-exposure showed a decrease in both cardiovascular and behavioral conditioned responses. These results suggest that the LSA participates in the expression, but not acquisition or consolidation, of contextual fear conditioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.