943 resultados para KETAMINE PRETREATMENT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wood-degrading fungi are able to degrade a large range of recalcitrant pollutants which resemble the lignin biopolymer. This ability is attributed to the production of lignin-modifying enzymes, which are extracellular and non-specific. Despite the potential of fungi in bioremediation, there is still an understanding gap in terms of the technology. In this thesis, the feasibility of two ex situ fungal bioremediation methods to treat contaminated soil was evaluated. Treatment of polycyclic aromatic hydrocarbons (PAHs)-contaminated marsh soil was studied in a stirred slurry-phase reactor. Due to the salt content in marsh soil, fungi were screened for their halotolerance, and the white-rot fungi Lentinus tigrinus, Irpex lacteus and Bjerkandera adusta were selected for further studies. These fungi degraded 40 - 60% of a PAH mixture (phenanthrene, fluoranthene, pyrene and chrysene) in a slurry-phase reactor (100 ml) during 30 days of incubation. Thereafter, B. adusta was selected to scale-up and optimize the process in a 5 L reactor. Maximum degradation of dibenzothiophene (93%), fluoranthene (82%), pyrene (81%) and chrysene (83%) was achieved with the free mycelium inoculum of the highest initial biomass (2.2 g/l). In autoclaved soil, MnP was the most important enzyme involved in PAH degradation. In non-sterile soil, endogenous soil microbes together with B. adusta also degraded the PAHs extensively, suggesting a synergic action between soil microbes and the fungus. A fungal solid-phase cultivation method to pretreat contaminated sawmill soil with high organic matter content was developed to enhance the effectiveness of the subsequent soil combustion. In a preliminary screening of 146 fungal strains, 28 out of 52 fungi, which extensively colonized non-sterile contaminated soil, were litter-decomposing fungi. The 18 strains further selected were characterized by their production of lignin-modifying and hydrolytic enzymes, of which MnP and endo-1,4-β-glucanase were the main enzymes during cultivation on Scots pine (Pinus sylvestris) bark. Of the six fungi selected for further tests, Gymnopilus luteofolius, Phanerochaete velutina, and Stropharia rugosoannulata were the most active soil organic matter degraders. The results showed that a six-month pretreatment of sawmill soil would result in a 3.5 - 9.5% loss of organic matter, depending on the fungus applied. The pretreatment process was scaled-up for a 0.56 m3 reactor, in which perforated plastic tubes filled with S. rugosoannulata growing on pine bark were introduced into the soil. The fungal pretreatment resulted in a soil mass loss of 30.5 kg, which represents 10% of the original soil mass (308 kg). Despite the fact that Scots pine bark contains several antimicrobial compounds, it was a suitable substrate for fungal growth and promoter of the production of oxidative enzymes, as well as an excellent and cheap natural carrier of fungal mycelium. This thesis successfully developed two novel fungal ex situ bioremediation technologies and introduce new insights for their further full-scale application. Ex situ slurry-phase fungal reactors might be applied in cases when the soil has a high water content or when the contaminant bioavailability is low; for example, in wastewater treatment plants to remove pharmaceutical residues. Fungal solid-phase bioremediation is a promising remediation technology to ex situ or in situ treat contaminated soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral administration of pulegone (400 mg/kg) to rats once daily for five days caused significant decreases in the levels of liver microsomal cytochrome P-450 and heme. Cytochrome b5 and NAD(P)H-cytochrome c-reductase activities were not affected. Massive hepatotoxicy accompanied by an increase in serum glutamate pyruvate transaminase (SGPT) and a decrease in glucose-6-phosphatase were observed upon treatment with pulegone. A significant decrease in aminopyrine N-demethylase was also noticed after pulegone administration. Menthone or carvone (600 mg/kg), compounds related to pulegone, when administered orally did not cause any decrease in cytochrome P-450 levels. The hepatotoxic effects of pulegone were both dose and time dependent. Pretreatment of rats with phenobarbital (PB) or diethylmaleate (DEM) potentiated the hepatotoxicity caused by pulegone, whereas, pretreatment with 3-methylcholanthrene (3-MC) or piperonyl butoxide protected from it. It appears that a PB induced cytochrome P-450 catalysed reactive metabolite(s) may be responsible for the hepatotoxicity caused by pulegone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phosphorylcholine-binding protein from the hemolymph of the snail Achatina fulica was purified to near homogeneity using a Sepharose phenylphosphorylcholine affinity column. The protein bound to the affinity column was eluted with 5 mM phosphorylcholine as a single symmetrical peak. The purified protein (400 Kda) contained 35–40% carbohydrate. On SDS-PAGE the protein separated into two bands of 20 and 24 Kda, and had a pI of 5.9. On immunodiffusion, antiserum to the snail phosphorylcholine binding protein did not cross-react against other phosphorylcholine binding proteins, like rat serum phosphorylcholine-binding protein (PCBP), limulus C-reactive protein (CRP), or human CRP. On pretreatment of the snail hemolymph with this antiserum, the hemagglutination titer of the hemolymph was markedly decreased. The purified snail phosphorylcholine binding protein agglutinated rabbit erythrocytes in the absence of divalent cation (Ca+2) but trace amount of Ca+2 increased its binding. The strongest inhibitor of the agglutination reaction was lactose, followed by melibiose and 2-deoxygalactose. The relationships of the snail phosphorylcholine binding protein to other hemolymph agglutinins and to CRPs are discussed in light of common phylogeny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foreign compounds, such as drugs are metabolised in the body in numerous reactions. Metabolic reactions are divided into phase I (functionalisation) and phase II (conjugation) reactions. Uridine diphosphoglucuronosyltransferase enzymes (UGTs) are important catalysts of phase II metabolic system. They catalyse the transfer of glucuronic acid to small lipophilic molecules and convert them to hydrophilic and polar glucuronides that are readily excreted from the body. Liver is the main site of drug metabolism. Many drugs are racemic mixtures of two enantiomers. Glucuronidation of a racemic compound yields a pair of diastereomeric glucuronides. Stereoisomers are interesting substrates in glucuronidation studies since some UGTs display stereoselectivity. Diastereomeric glucuronides of O-desmethyltramadol (M1) and entacapone were selected as model compounds in this work. The investigations of the thesis deal with enzymatic glucuronidation and the development of analytical methods for drug metabolites, particularly diastereomeric glucuronides. The glucuronides were analysed from complex biological matrices, such as urine or from in vitro incubation matrices. Various pretreatment techniques were needed to purify, concentrate and isolate the analytes of interest. Analyses were carried out by liquid chromatography (LC) with ultraviolet (UV) or mass spectrometric (MS) detection or with capillary electromigration techniques. Commercial glucuronide standards were not available for the studies. Enzyme-assisted synthesis with rat liver microsomes was therefore used to produce M1 glucuronides as reference compounds. The glucuronides were isolated by LC/UV and ultra performance liquid chromatography (UPLC)/MS, while tandem mass spectrometry (MS/MS) and nuclear magnetic resonance (NMR) spectroscopy were employed in structural characterisation. The glucuronides were identified as phenolic O-glucuronides of M1. To identify the active UGT enzymes in (±)-M1 glucuronidation recombinant human UGTs and human tissue microsomes were incubated with (±)-M1. The study revealed that several UGTs can catalyse (±)-M1 glucuronidation. Glucuronidation in human liver microsomes like in rat liver microsomes is stereoselective. The results of the studies showed that UGT2B7, most probably, is the main UGT responsible for (±)-M1 glucuronidation in human liver. Large variation in stereoselectivity of UGTs toward (±)-M1 enantiomers was observed. Formation of M1 glucuronides was monitored with a fast and selective UPLC/MS method. Capillary electromigration techniques are known for their high resolution power. A method that relied on capillary electrophoresis (CE) with UV detection was developed for the separation of tramadol and its free and glucuronidated metabolites. The suitability of the method to identify tramadol metabolites in an authentic urine samples was tested. Unaltered tramadol and four of its main metabolites were detected in the electropherogram. A micellar electrokinetic chromatography (MEKC) /UV method was developed for the separation of the glucuronides of entacapone in human urine. The validated method was tested in the analysis of urine samples of patients. The glucuronides of entacapone could be quantified after oral entacapone dosing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension is one of the major risk factors for cardiovascular morbidity. The advantages of antihypertensive therapy have been clearly demonstrated, but only about 30% of hypertensive patients have their blood pressure (BP) controlled by such treatment. One of the reasons for this poor BP control may lie in the difficulty in predicting BP response to antihypertensive treatment. The average BP reduction achieved is similar for each drug in the main classes of antihypertensive agents, but there is a marked individual variation in BP responses to any given drug. The purpose of the present study was to examine BP response to four different antihypertensive monotherapies with regard to demographic characteristics, laboratory test results and common genetic polymorphisms. The subjects of the present study are participants in the pharmacogenetic GENRES Study. A total of 208 subjects completed the whole study protocol including four drug treatment periods of four weeks, separated by four-week placebo periods. The study drugs were amlodipine, bisoprolol, hydrochlorothiazide and losartan. Both office (OBP) and 24-hour ambulatory blood pressure (ABP) measurements were carried out. BP response to study drugs were related to basic clinical characteristics, pretreatment laboratory test results and common polymorphisms in genes coding for components of the renin-angiotensin system, alpha-adducin (ADD1), beta1-adrenergic receptor (ADRB1) and beta2-adrenergic receptor (ADRB2). Age was positively correlated with BP responses to amlodipine and with OBP and systolic ABP responses to hydrochlorothiazide, while body mass index was negatively correlated with ABP responses to amlodipine. Of the laboratory test results, plasma renin activity (PRA) correlated positively with BP responses to losartan, with ABP responses to bisoprolol, and negatively with ABP responses to hydrochlorothiazide. Uniquely to this study, it was found that serum total calcium level was negatively correlated with BP responses to amlodipine, whilst serum total cholesterol level was negatively correlated with ABP responses to amlodipine. There were no significant associations of angiotensin II type I receptor 1166A/C, angiotensin converting enzyme I/D, angiotensinogen Met235Thr, ADD1 Gly460Trp, ADRB1 Ser49Gly and Gly389Arg and ADRB2 Arg16Gly and Gln27Glu polymorphisms with BP responses to the study drugs. In conclusion, this study confirmed the relationship between pretreatment PRA levels and response to three classes of antihypertensive drugs. This study is the first to note a significant inverse relation between serum calcium level and responsiveness to a calcium channel blocker. However, this study could not replicate the observations that common polymorphisms in angiotensin II type I receptor, angiotensin converting enzyme, angiotensinogen, ADD1, ADRB1, or ADRB2 genes can predict BP response to antihypertensive drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of soil microbiota and their activities is central to the understanding of many ecosystem processes such as decomposition and nutrient cycling. The collection of microbiological data from soils generally involves several sequential steps of sampling, pretreatment and laboratory measurements. The reliability of results is dependent on reliable methods in every step. The aim of this thesis was to critically evaluate some central methods and procedures used in soil microbiological studies in order to increase our understanding of the factors that affect the measurement results and to provide guidance and new approaches for the design of experiments. The thesis focuses on four major themes: 1) soil microbiological heterogeneity and sampling, 2) storage of soil samples, 3) DNA extraction from soil, and 4) quantification of specific microbial groups by the most-probable-number (MPN) procedure. Soil heterogeneity and sampling are discussed as a single theme because knowledge on spatial (horizontal and vertical) and temporal variation is crucial when designing sampling procedures. Comparison of adjacent forest, meadow and cropped field plots showed that land use has a strong impact on the degree of horizontal variation of soil enzyme activities and bacterial community structure. However, regardless of the land use, the variation of microbiological characteristics appeared not to have predictable spatial structure at 0.5-10 m. Temporal and soil depth-related patterns were studied in relation to plant growth in cropped soil. The results showed that most enzyme activities and microbial biomass have a clear decreasing trend in the top 40 cm soil profile and a temporal pattern during the growing season. A new procedure for sampling of soil microbiological characteristics based on stratified sampling and pre-characterisation of samples was developed. A practical example demonstrated the potential of the new procedure to reduce the analysis efforts involved in laborious microbiological measurements without loss of precision. The investigation of storage of soil samples revealed that freezing (-20 °C) of small sample aliquots retains the activity of hydrolytic enzymes and the structure of the bacterial community in different soil matrices relatively well whereas air-drying cannot be recommended as a storage method for soil microbiological properties due to large reductions in activity. Freezing below -70 °C was the preferred method of storage for samples with high organic matter content. Comparison of different direct DNA extraction methods showed that the cell lysis treatment has a strong impact on the molecular size of DNA obtained and on the bacterial community structure detected. An improved MPN method for the enumeration of soil naphthalene degraders was introduced as an alternative to more complex MPN protocols or the DNA-based quantification approach. The main advantage of the new method is the simple protocol and the possibility to analyse a large number of samples and replicates simultaneously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Addition of ferrous sulfate, but not ferric chloride, in micromolar concentrations to rat liver mitochondria induced high rates of consumption of oxygen. The oxygen consumed was several times in excess of the reducing capacity of ferrous-iron (O: Fe ratios 5�8). This occurred in the absence of NADPH or any exogenous oxidizable substrate. The reaction terminated on oxidation of ferrous ions. Malondialdehyde (MDA), measured as thiobarbituric acid-reacting material, was produced indicating peroxidation of lipids. The ratio of O2: MDA was about 4: 1. Pretreatment of mitochondria with ferrous sulfate decreased the rate of oxidation (state 3) with glutamate (+malate) as the substrate by about 40% but caused little damage to energy tranduction process as represented by ratios of ADP: O and respiratory control, as well as calcium-stimulated oxygen uptake and energy-dependent uptake of [45Ca]-calcium. Addition of succinate or ubiquinone decreased ferrous iron-induced lipid peroxidation in intact mitochondria. In frozen-thawed mitochondria, addition of succinate enhanced lipid peroxidation whereas ubiquinone had little effect. These results suggest that ferrous-iron can cause peroxidation of mitochondrial lipids without affecting the energy transduction systems, and that succinate and ubiquinone can offer protection from damage due to such ferrous-iron released from the stores within the cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The higher levels of cytochrone P-450 dependent enzyme activities reported earlier are traced to higher levels of cytochrome P-450 (CYPIIB1/B2 like) messenger RNA in the chloroquine resistant than the sensitive strains. The messenger RNA is also induced by phenobarbitone in the sensitive strain. Pretreatment with phenobarbitone affords partial protection to chloroquine toxicity in the sensitive strain and this is not due to a differential accumulation of the drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral administration (250 mg/kg) of menthofuran, a monoterpene furan, to rats once daily for 3 days caused hepatotoxicity as judged by a significant increase in serum glutamate pyruvate transaminase (SGPT) and decreases in glucose-6-phosphatase and aminopyrine N-demethylase activities. Administration of menthofuran also resulted in a decrease in the levels of liver microsomal cytochrome P-450, whereas cytochrome b(5) and NAD(P)H-cytochrome c reductase activities were not affected. These effects of menthofuran were both dose- and time-dependent. Pretreatment of rats with phenobarbital (PB) prior to menthofuran treatment potentiated hepatotoxicity suggesting that a PB-induced cytochrome P-450 catalyzed the formation of reactive metabolite(s) responsible for the hepatotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purine nucleotide synthesis in Plasmodium falciparum takes place solely by the purine salvage pathway in which preformed purine base(s) are salvaged from the host and acted upon by a battery of enzymes to generate AMP and GMP. Inhibitors of this pathway have a potent effect on the in vitro growth of P. falciparum and are hence, implicated as promising leads for the development of new generation anti-malarials. Here, we describe the mechanism of inhibition of the intraerythrocytic growth of P. falciparum by the purine nucleoside precursor, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Our results show that AICAR toxicity is mediated through the erythrocyte in which AICAR is phosphorylated to its nucleotide, ZMP. Further, purine metabolite labeling of the parasitized erythrocytes by H-3]-hypoxanthine, in the presence of AICAR, showed a significant decrease in radioactive counts in adenylate fractions but not in guanylate fractions. The most dramatic effect on parasite growth was observed when erythrocytes pretreated with AICAR were used in culture. Pretreatment of erythrocytes with AICAR led to significant intracellular accumulation of ZMP and these erythrocytes were incapable of supporting parasite growth. These results implicate that in addition to the purine salvage pathway in P. falciparum, AICAR alters the metabolic status of the erythrocytes, which inhibits parasite growth. As AICAR and ZMP are metabolites in the human serum and erythrocytes, our studies reported here throw light on their possible role in disease susceptibility, and also suggests the possibility of AICAR being a potential prophylactic or chemotherapeutic anti-malarial compound. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of guar gum with biotite mica has been investigated through adsorption, flotation and electrokinetic measurements. The adsorption densities of guar gum increase with increase of pH and the isotherms exhibit Langmuirian behaviour. Pretreatment of mica with a complexing agent such as EDTA results in a decrease in the adsorption density, highlighting the contribution of metal ions to the adsorption process. An increase in the surface face-to-edge ratio lends to an increase in the adsorption density. The flotation recoveries decrease as a function of pH, complementing the adsorption results. However, polymer depressant ability is reduced in the case of EDTA treated mica, consequent to reduction of metallic sites. Electrokinetic measurements portray conformational rearrangements of macromolecules with the loading, resulting in the shift of the shear plane, further away from the interface. Dissolution experiments indicate release of metal ions from mica, while co-precipitation tests confirm polymer-metal ion interaction in the bulk solution. The adsorption process is governed by hydrogen bonding as well as chemical interaction between guar gum and the surface metal hydroxide groups of mica. (C) 1997 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was undertaken to assess the role of reactive oxygen species (ROS) in rat aortic ring vasoreactivity and integrity by using various peroxovanadate (pV) compounds. All the pV compounds (1 nM-300 mu M) used in the present study exerted concentration-dependent contractions on endothelium intact rat aortic rings. All compounds with an exception of DPV-asparagine (DPV-asn) significantly altered vascular integrity as shown by diminished KCl responses. Phenylephrine (PE)-mediated contractions (3 nM-300 mu M) were unaltered in the presence of these compounds. Acetylcholine (Ach)-mediated relaxation in PE (1 mu M) pre-contracted rings was significantly reduced in presence of diperoxovanadate (DPV), poly (sodium styrene sulfonate-co-maleate)-pV (PSS-CoM-pV) and poly (sodium styrene 4-sulfonate)-pV (PSS-pV). However, no significant change in Ach-mediated responses was observed in the presence of poly (acrylate)-pV (PM-pV) and DPV-asn. DPV-asn was thus chosen to further elucidate mechanism involved in peroxide mediated modulation of vasoreactivity. DPV-asn (30 nM-300 mu M) exerted significantly more stable contractions, that was found to be catalase (100 U/ml) resistant in comparison with H(2)O(2) (30 nM-300 mu M) in endothelium intact aortic rings. These contractile responses were found to be dependent on extracellular Ca(2+) and were significantly inhibited in presence of ROS scavenger N-acetylcysteine (100 mu M). Intracellular calcium chelation by BAPTA-AM (10 mu M) had no significant effect on DPV-asn (30 nM-300 mu M) mediated contraction. Pretreatment of aortic rings by rho-kinase inhibitor Y-27632 (10 mu M) significantly inhibited DPV-asn-mediated vasoconstriction indicating role of voltage-dependent Ca(2+) influx and downstream activation of rho-kinase. The small initial relaxant effect obtained on addition of DPV-asn (30 nM-1 mu M) in PE (1 mu M) pre-contracted endothelium intact rings, was prevented in the presence of guanylate cyclase inhibitor, methylene blue (10 mu M) and/or nitric oxide synthase (NOS) inhibitor, L-NAME (100 mu M) suggesting involvement of nitric oxide and cGMP. DPV-asn, like H(2)O(2), exerted a response of vasoconstriction in normal arteries and vasodilation at low concentrations (30 nM-1 mu M) in PE-pre contracted rings with overlapping mechanisms. These findings suggest usefulness of DPV-asn having low toxicity, in exploring the peroxide-mediated effects on various vascular beds. The present study also convincingly demonstrates role of H(2)O(2) in the modulation of vasoreactivity by using stable peroxide DPV-asn and warrants future studies on peroxide mediated signaling from a newer perspective. (C) 2011 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaves and leaf sheath of banana and areca husk (Areca catechu) constitute an important component of urban solid waste (USW) in India which are difficult to degrade under normal windrow composting conditions. A successful method of anaerobic digestion built around the fermentation properties of these feedstock has been evolved which uses no moving parts, pretreatment or energy input while enabling recovery of four products: fiber, biogas, compost and pest repellent. An SRT of 27 d and 35 d was found to be optimum for fiber recovery for banana leaf and areca husk, respectively. Banana leaf showed a degradation pattern different from other leaves with slow pectin-1 degradation (80%) and 40% lignin removal in 27 d SRT. Areca husk however, showed a degradation pattern similar to other plant biomass. Mass recovery levels for banana leaf were fiber-20%, biogas-70% (400 ml/g TS) and compost-10%. For areca husk recovery was fiber-50%, biogas-45% (250 ml/g TS) and compost-5%. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purinergic signaling plays a key role in a variety of physiological functions, including regulation of immune responses. Conventional alpha beta T cells release ATP upon TCR cross-linking; ATP binds to purinergic receptors expressed by these cells and triggers T cell activation in an autocrine and paracrine manner. Here, we studied whether similar purinergic signaling pathways also operate in the ``unconventional'' gamma delta T lymphocytes. We observed that gamma delta T cells purified from peripheral human blood rapidly release ATP upon in vitro stimulation with anti-CD3/CD28-coated beads or IPP. Pretreatment of gamma delta T cells with (10)panx-1, CBX, or Bf A reversed the stimulation-induced increase in extracellular ATP concentration, indicating that panx-1, connexin hemichannels, and vesicular exocytosis contribute to the controlled release of cellular ATP. Blockade of ATP release with (10)panx-1 inhibited Ca2+ signaling in response to TCR stimulation. qPCR revealed that gamma delta T cells predominantly express purinergic receptor subtypes A2a, P2X1, P2X4, P2X7, and P2Y11. We found that pharmacological inhibition of P2X4 receptors with TNP-ATP inhibited transcriptional up-regulation of TNF-alpha and IFN-gamma in gamma delta T cells stimulated with anti-CD3/CD28-coated beads or IPP. Our data thus indicate that purinergic signaling via P2X4 receptors plays an important role in orchestrating the functional response of circulating human gamma delta T cells. J. Leukoc. Biol. 92: 787-794; 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Curcumin, a principal component of turmeric, acts as an immunomodulator regulating the host defenses in response to a diseased condition. The role of curcumin in controlling certain infectious diseases is highly controversial. It is known to alleviate symptoms of Helicobacter pylori infection and exacerbate that of Leishmania infection. We have evaluated the role of curcumin in modulating the fate of various intracellular bacterial pathogens. We show that pretreatment of macrophages with curcumin attenuates the infections caused by Shigella flexneri (clinical isolates) and Listeria monocytogenes and aggravates those caused by Salmonella enterica serovar Typhi CT18 (a clinical isolate), Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Yersinia enterocolitica. Thus, the antimicrobial nature of curcumin is not a general phenomenon. It modulated the intracellular survival of cytosolic (S. flexneri and L. monocytogenes) and vacuolar (Salmonella spp., Y. enterocolitica, and S. aureus) bacteria in distinct ways. Through colocalization experiments, we demonstrated that curcumin prevented the active phagosomal escape of cytosolic pathogens and enhanced the active inhibition of lysosomal fusion by vacuolar pathogens. A chloroquine resistance assay confirmed that curcumin retarded the escape of the cytosolic pathogens, thus reducing their inter- and intracellular spread. We have demonstrated that the membrane-stabilizing activity of curcumin is crucial for its differential effect on the virulence of the bacteria.