713 resultados para Interphase transformer
Resumo:
Simulations of an n-heptane spray autoigniting under conditions relevant to a diesel engine are performed using two-dimensional, first-order conditional moment closure (CMC) with full treatment of spray terms in the mixture fraction variance and CMC equations. The conditional evaporation term in the CMC equations is closed assuming interphase exchange to occur at the droplet saturation mixture fraction values only. Modeling of the unclosed terms in themixture fraction variance equation is done accordingly. Comparison with experimental data for a range of ambient oxygen concentrations shows that the ignition delay is overpredicted. The trend of increasing ignition delay with decreasing oxygen concentration, however, is correctly captured. Good agreement is found between the computed and measured flame lift-off height for all conditions investigated. Analysis of source terms in the CMC temperature equation reveals that a convective-reactive balance sets in at the flame base, with spatial diffusion terms being important, but not as important as in lifted jet flames in cold air. Inclusion of droplet terms in the governing equations is found to affect the mixture fraction variance field in the region where evaporation is the strongest, and to slightly increase the ignition delay time due to the cooling associated with the evaporation. Both flame propagation and stabilization mechanisms, however, remain unaffected. © 2011 Taylor & Francis.
Resumo:
Rogowski transducers have become an increasingly popular method of measuring current within prototyping applications and power electronics equipment due to their significant advantages compared to an equivalent current transformer. This paper presents a simple and practical construction technique of high-performance, low-cost Rogowski transducers and accompanying circuitry. Experimental tests were carried out to show the validity of the proposed construction technique. © 2005 IEEE.
Resumo:
Small nuclear ribonucleoprotein particles (snRNPs) and non-snRNP splicing factors containing a serine/arginine-rich domain (SR proteins) concentrate in 'speckles' in the nucleus of interphase cells(1). It is believed that nuclear speckles act as storage sites for splicing factors while splicing occurs on nascent transcripts(2). Splicing factors redistribute in response to transcription inhibition(3,4) or viral infection(5), and nuclear speckles break down and reform as cells progress through mitosis(6). We have now identified and cloned a kinase, SRPK1, which is regulated by the cell cycle and is specific for SR proteins; this kinase is related to a Caenorhabditis elegans kinase and to the fission yeast kinase Dsk1 (ref. 7). SRPK1 specifically induces the disassembly of nuclear speckles, and a high level of SRPK1 inhibits splicing in vitro. Our results indicate that SRPK1 mag have a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells, and the reorganization of nuclear speckles during mitosis.
Resumo:
The crystallographic tilt in GaN layers grown by epitaxial lateral overgrowth (ELO) on sapphire (0001) substrates was investigated by using double crystal X-ray diffraction (DC-XRD). It was found that ELO GaN stripes bent towards the SiNx mask in the direction perpendicular to seeding lines. Each side of GaN (0002) peak in DC-XRD rocking curves was a broad peak related with the crystallographic tilt. This broad peak split into two peaks (denoted as A and B), and peak B disappeared gradually when the mask began to be removed by selective etching. Only narrow peak A remained when the SiNx mask was removed completely. A model based on these results has been developed to show that there are two factors responsible for the crystallographic tilt: One is the non-uniformity elastic deformation caused by the interphase force between the ELO GaN layer and the SiNx mask. The other is the plastic deformation, which is attributed to the change of the threading dislocations (TDs)-from vertical in the window regions to the lateral in the regions over the mask.
Resumo:
用线性差分径向变化仪连续监测充分灌溉条件下的仕女红桃树茎直径变化,结合同步观测的气象因子数据,分析2007年3月中旬~10月下旬的仕女红桃树茎直径变化规律,为基于果树直径变化的灌溉管理提供基础依据。结果表明:仕女红桃树茎直径具有很好的时间变化规律,日变化曲线呈均匀"U"型,日最大值出现在黎明前后,日最小值出现在下午4时左右;季节变化方面,MDS呈低—高—低变化规律,从萌芽—开花期到果实成熟期的不同生长阶段,MDS平均值依次为87μm、200.84μm、253.75μm、171.67μm、138.67μm和94.34μm,坐果—展叶期和第一次果实膨大期MDS值居全生育期最高,需水量最大。桃树直径生长呈慢—快—慢变化规律,3月中下旬,开始生长,平均日生长量从12.68μm逐渐增加大36.84μm,7月24日~8月23日之间生长最快,平均日生长量达73.67μm,然后迅速下降,到生长末期平均日生长量仅为7.36μm。3~5月和7~9月可分别采用DI和MDS作为灌溉控制指标。茎直径变化与气象因子响应强烈,但不同生长阶段对茎直径变化产生主要影响的气象因子不同,对MDS产生主要影响的气象因子依次为:Rn、Tmax、Tma...
Resumo:
水稻是重要的粮食作物,其产量的增加和品质的改良都是关系国计民生的大事。就我国现阶段的国情而言,水稻产量在现有水平上稳步提升仍是未来十几年甚至几十年农业生产最重要的目标之一。尽管根据“超级杂交水稻育种”的战略设想和水稻育种实践,通过不断地改进育种技术可望在更高的产量水平上进行水稻杂种优势利用,在稻属植物内还具有很大的产量潜力可以挖掘。然而,仅仅从现有的种质基础出发,要更大幅度提高水稻单产,实现“超级杂交稻”的目标也存在一些困难:现有的推广品种是二倍体,尽管种类众多,但是其基因组的来源相对单一;同时,水稻基因组DNA含量也是作物中最少的,基因组内寻求开发潜力有一定困难;水稻作为C3植物,光合利用效率不高也是制约水稻产量提高的因素之一。因此,寻求常规手段以外的技术突破或者方法创新,是实现“超级杂交稻”的目标的迫切需求。本研究利用秋水仙素能抑制细胞分裂中纺锤丝的收缩、使细胞染色体加倍的作用,对水稻幼穗诱导的愈伤组织细胞进行加倍,并分化出再生植株;创制出水稻同源四倍体新的种质材料,在此基础上选育水稻同源四倍体雄性不育三系材料,并实现水稻同源四倍体的三系配套,开展水稻同源四倍体杂种优势利用和四倍体杂交水稻选育研究,建立水稻同源四倍体杂种优势利用的新技术体系。这不仅有助于倍性水平杂种优势的开拓和利用,同时也将为我国新世纪“超级稻”育种研究开辟一条新的技术途径。 水稻幼穗诱导愈伤组织并分化成苗是一项成熟、简单的组织培养技术。本研究以普通二倍体水稻亲本为材料,用秋水仙素进行水稻的多倍体化诱导,创制同源四倍体水稻三系亲本材料并对其进行鉴定。多倍体化以秋水仙素诱导的愈伤组织培养为基础,研究不同秋水仙素浓度梯度和愈伤组织诱导培养基组合对诱导四倍体植株的影响。结果表明在MS+2,4 D 1.0mg/L+ KT0.2mg/L+ IAA0.2mg/L 和500mg/L的秋水仙素处理下,水稻愈伤组织染色体加倍(有最高的效率)效果较好,平均加倍频率可达25.26%,其中,材料CDR22和IR26诱导较易成功,加倍频率分别达到75%和26.5%;相对材料94109 1.3%加倍频率和冈46B 10.8%加倍频率,诱导率差异极显著。 对水稻四倍体材料进行了形态学鉴定结果表明,与二倍体水稻对照相比其株高、穗长、花粉育性等主要农艺性状,确定四倍体材料在穗长和千粒重两方面极显著提高,种子的长度和宽度也显著增长。对花粉育性鉴定,确认水稻四倍体不育系材料仍为不育,保持系材料自交和杂交可育,恢复系材料自交和杂交可育。对四倍体材料进行细胞形态、染色体数目等方面进行细胞学鉴定,经核型分析表明水稻四倍体材料具有48条染色体,是二倍体水稻的两倍。水稻四倍体材料根尖分生组织细胞与二倍体的根尖分生组织细胞相比,细胞体积、细胞核和核仁显著增大。四倍体三系材料在细胞有丝分裂中期均可规则排列在赤道板,并能均等地移向两极;后期观察中没有发现染色体分离滞后现象,分裂末期细胞能够形成大小相对均一的子细胞。水稻同源四倍体三系材料细胞分裂未见异常,植株生长发育正常。 从1996年至2006年,针对结实率、有效分蘖、着粒数和穗长等主要农艺性状,通过系谱选育的方法,对培育的同源四倍体水稻亲本材料进行了连续选择和改良,取得较好成效。表现为结实率的改良效果极佳,所有改良材料的平均结实率均呈上升趋势,如D237(29.70%→72.70%)、DTB(19.55%→53.21%)等。有效分蘖总体呈现上升趋势,但在不同的年份,如1998和2002存在较大的负向波动。部分材料改良效果明显,如D19B(5.87→13.50)、D什香 (7.00→12.00)等;同时一些材料如DTB和D明恢63虽然总体略有提高,但在不同的年份波动很大,因此存在较大改良阻力,原因还有待进一步研究。着粒数的改良上升趋势比较显著,除保持系的DTB之外,其余材料的平均着粒数有显著提高。穗长的改良阻力较大,虽然不同材料总体上有所提高,但效果并不显著,并且不同年份有较大负向波动(2001)。此外还对株高、剑叶长等性状也进行了选择,但效果不显著,原因有待进一步提高。同源四倍体材料产量相关性状遗传改良幅度不一致,保持系和恢复系间的遗传改良效果也存在差异。这为同源四倍体水稻的进一步利用打下了良好的基础。 籼稻和粳稻亚种间杂交及杂种优势利用的主要障碍就是其低的结实率。而同源四倍体杂交水稻的研究为提高杂交水稻的杂种优势利用创造了新的途径。本研究通过随机区组设计方案,挑选性状优良的二倍体水稻材料,包括雄性不育系,保持系和恢复系进行秋水仙素诱导加倍,从而获得同源四倍体水稻对应的三系材料。利用选育的优良水稻同源四倍体三系材料,配制7个杂交组合,杂交F1代与其恢复系亲本进行比较,用于计算超亲优势(HB);而杂交F1代与生产上大面积推广的二倍体杂交品种汕优63进行比较,用于计算杂种优势。结果显示,同源四倍体杂交水稻的超亲优势表现为:每株有效穗变化幅度为1.4%至105.9%,总粒数为0.5%至74.3%,每穗实粒数为17.6%至255.7%,结实率为9.6%至130.4%。这些农艺性状的改良使得这7个杂种F1的理论产量的超亲优势高达64.8%至672.7%。小区试验中四倍体杂交水稻组合T461A/T4002和T461A/T4193分别比二倍体对照汕优63提高46.3%和38.3%以上,除一个品种以外所有品种产量均接近或高于汕优63的产量。同源四倍体水稻强大的杂种优势表明,亚种间杂交育性低的问题可通过四倍体化及强化选择来解决。此外,同源四倍体杂交水稻器官的巨大性也是其产量提高的有利因素,水稻同源四倍体三系杂种优势利用研究具有一定的理论价值和商业生产潜力。 Rice is one of the major food crops, the improvement of the production and quality of it is an important thing related to the people's livelihood. On China's current national conditions, steadily increase of the rice yield based on the current level is still one of the most important goals in the next decade or even decades of agricultural production. According to the "super hybrid rice breeding" the strategic and rice breeding practice, improvement of the use of hybrid rice heterosis through continuous improvements in breeding technology is expected to get a higher level of rice yield, there are also a great yield potential can be exploited. However, there are also some difficulties to increase rice yield obviously and implement the goal of "super hybrid rice" based on the existing germplasm: Rice varieties in promotion are diploid, although there are many varieties, but their genome are from a comparatively single source; Meanwhile, the rice genome DNA are the least among the crops, it is difficult to exploit the development potential within the genome; Rice as C3 plants, photosynthetic efficiency is not high, it is one of the factors constraint rice yield. Therefore, seeking technological breakthroughs or innovative methods different from conventional means is the urgent needs to reach the target of "super hybrid rice". Using colchicine inhibit spindle contraction during cell division, double the cell chromosome, we induced callus cells from rice panicle to be doubled, and differentiated regeneration; we created a new autotetraploid rice germplasm material, and on that basis we bred male sterility three line autotetraploid rice materials, and the achieved the three line rice autotetraploid matchmaking, researched in autotetraploid rice heterosis usage and tetraploid hybrid rice breeding, constituted a new technology system of autotetraploid hybrid rice heterosis utilization. This not only helps the tetraploid rice heterosis exploration and use, but also inaugurates a new technical means for China in the new century "super rice" breeding research. We chose ordinary diploid rice as materials, using colchicine to induce the polyploidization, created the autotetraploid rice three-line materials and identified them. The polyploidization was based on the colchicine-induced callus tissue culture, and we experimented different colchicine concentrations and culture mediums to induce tetraploid plants, confirmed that the optimal concentration for inducement was 500 mg/L, the average induce rate was 25.26 %. Among all the materials, CDR22 and IR26 had higher induced rate; in contrary, 94109 and GANG46B had lower induced rate, the difference was significant. Autotetraploid materials was identified of both morphological and cytological, compared plant height, length of pollen sterility, and other major agronomic traits with a diploid rice as the control plant, identified that the autotetraploid materials had very significant advantages in ear length and thousand-grain weight, as well as the size of the seeds. Cytology identification included observation of the cell morphology, the number of chromosomes, and karyotype analysis on the autotetraploid materials confirmed that their chromosome number was 48, twice of the diploid rice. Mitoses in the three lines were common: chromosomes arrayed normally in metaphase and separated balanced into the two poles, chromosome moved without lagging in anaphase and daughter cells normally formed in telophase except one. It has been proved that tetraploid rice has normal meiosis as their diploid relatives, which usually including series of sub-phases as interphase, prophase I (five sub-phases), prophase II, metaphase I, II, anaphase I, II and telophase I, II. However, abnormal phenomena, such as formation of tetravalent, trivalent and univalent, chromosome lagging and so on, which would finally block meiosis. Configurations of chromosome in metaphaseⅠwere versatile in structure and form accept the bivalent. That condition varied in different strain, suggesting more complex paring configurations and more versatile genetic characters in tetraploid rice. All these abnormalities in meiosis contributed to low fertility of gamete and might consequently resulted in low seed setting. Successive selection and improvement on seed set, productive tiller per plant, total grains per panicle, panicle length and so on had been carried out from 1996 to 2006. The raise of seed sets was significant in both restorers and maintainers. Seed sets of some strains were improved more significantly than others, for example D237(29.70%→72.70%)、DTB(19.55%→53.21%)and et al.. Productive tiller per plant was improved to some extant. The tendency of improvement was rising on the whole but changed in some years such as 1998 and 2002. Part of the stains increased greatly, such as D19B(5.87→13.50)、Dshixiang (7.00→12.00) and so on, but some strains including DTB and Dminghui63 only increased little and decreased in some years by unknown reason. Total grains per panicle increased significantly and all strains except DTB increased. Improvement of panicle length termed to be hard. Different strains showed different capacities for improvement and floating existed in different years for example 2001. It has been proved that other agronomical traits including plant length, flag leaf length and so on could be improved but not significantly by selection also. In a word, agronomical traits could be raised by successive selection that is prerequisite for further utility of autotetraploid rice. Poor fertility is the main barrier for utilizing heterosis between the two rice (Oryza stiva L.) sub-species, indica and japonica. Recently, the development of autotetraploid hybrids (2n=4x=48) has been suggested as a new method for increasing heterosis in hybrid rice. Using standard experimental protocols, the elite diploid rice male sterile, maintainer, and restorer lines were colchine-doubled and autotetraploid counterparts were obtained. Seven resulting hybrids were analyzed for heterobeltiosis (HB), where the F1 was compared to the male parent, and the degree of heterosis, where the F1 was compared to the diploid commercial hybrid, Shanyou 63. The HB among the autotetraploid hybrids ranged from 1.4 to 105.9% for the productive panicles per plant, 0.5 to 74.3% for total kernels per panicle, 17.6 to 255.7% for filled kernels per panicle, and 9.6 to 130.4% for seed set. Improvements in these yield components resulted in the HB for kernel yield ranging from 64.8 to 672.7% among the seven hybrids. Hybrids T461A/T4002 and T461A/T4193 yielded 46.3 and 38.3% more, respectively than Shanyou 63, and all other hybrids but one yielded the same or more than Shanyou 63. The high heterosis for yield suggests that hybrid sterility between two rice sub-species may be overcome by using tetraploid lines followed by intensive selection. Also, the gigantic features of the autotetraploid hybrids may establish a plant structure able to support the higher yield.
Resumo:
The research of dipole source localization has great significance in both clinical research and applications. For example, the EEG recording from the scalp is widely used for the localization of sources of electrical activity in the brain. This paper presents a closed formula that describes the electric field of dipoles at arbitrary position, which is a linear transformer called the transfer matrix. The expression of transfer matrix and its many useful characteristics are given, which can be used for the analysis of the electrical fields of dipoles. This paper also presents the closed formula for determining the location and magnitude of single dipole or multi-dipoles according to its electrical field distribution. A calculation result for a single dipole shows that the dipole will be located at the midpoint of a line segment if there are equivalent fields at its two ends.
Resumo:
The purpose of this paper is to prepare for an easy and reliable biodosimeter protocol for radiation accidents involving high-linear energy transfer (LET) exposure. Human peripheral blood lymphocytes were irradiated using carbon ions (LET: 34.6 keV mu m(-1)), and the chromosome aberrations induced were analyzed using both a conventional colcemid block method and a calyculin A induced premature chromosome condensation (PCC) method. At a lower dose range (0-4 Gy), the measured dicentric (dics) and centric ring chromosomes (cRings) provided reasonable dose information. At higher doses (8 Gy), however, the frequency of dics and cRings was not suitable for dose estimation. Instead, we found that the number of Giemsa-stained drug-induced G2 prematurely condensed chromosomes (G2-PCC) can be used for dose estimation, since the total chromosome number (including fragments) was linearly correlated with radiation dose (r = 0.99). The ratio of the longest and the shortest chromosome length of the drug-induced G2-PCCs increased with radiation dose in a linear-quadratic manner (r = 0.96), which indicates that this ratio can also be used to estimate radiation doses. Obviously, it is easier to establish the dose response curve using the PCC technique than using the conventional metaphase chromosome method. It is assumed that combining the ratio of the longest and the shortest chromosome length with analysis of the total chromosome number might be a valuable tool for rapid and precise dose estimation for victims of radiation accidents.
Resumo:
在当前国际上,强流大功率电子加速器的研究是应用于辐射行业辐射源的一个主要研究方向。内置加速管三相高压变压器型电子加速器与外置加速管强流大功率电子加速器相比,具有结构紧凑、造价低、结构简单等特点。本文对内置加速管三相变压器型电子加速器在研制过程中出现的高压击穿频繁、高压硅堆的损坏率高、能量脉动高、引出窗束流损失大等问题进行了研究,提出并实施了改进措施,得到了较好的调试结果。并对存在的问题进一步提出了改进方案。首先介绍了内置加速管三相变压器型电子加速器的原理、结构及组成。在此基础上,针对在加速器调试过程中出现的经常性高压击穿等严重制约加速器正常运行的问题,通过对三相高压变压器型的高压发生器在变压器特性分析、气体绝缘和电场分布计算、高压电极形状优化、过电压分布的计算、正常工作时的仿真,提出了改进方案。经过改进后,从调试结果来看,所设计的高压发生器能够正常稳定的工作。研究了作为高压发生器易损坏的关键部件之一的高压整流硅堆的性能。根据硅堆内部的结构和在高压发生器中所处的位置,合理的建立了等效电路,并对电路中各结构电容在硅堆耐高压方面的作用进行了详细的理论计算和分析。对硅堆内部管芯的排列及在加速器中的摆放位置提出了改进方案,经过改进,提高了硅堆的耐压值,也保证了高压发生器的正常稳定运行。对于加速器引出窗束流损失大和能量脉动高的问题,用PBGUN程序计算了优化后的阴极鼻锥聚束极结构在强流状态下的束流轨迹和加速管出口处的束斑;对能量脉动测量做了分析,并得到较真实的脉动值。论文最后对内置加速管三相变压器型电子加速器在整体调试中存在电子束受到变压器杂散磁场影响的问题做了介绍,提出了分离式的改进结构
Resumo:
根据工业辐照对大功率电子加速器的需求,中科院近物所开展了高压变压器型DG系列电子加速器的研制。本文的主要工作是围绕其中两个型号DG-1.2(1.2MeV/40mA)和DG-2.5(2.5MeV/40mA)的研制及产业化而展开的研究。该类型电子加速器具备技术和市场优势, DG系列的研制成功,必将推动我国辐照加工业的发展。论文重点研究了基于空心变压器结构高压发生器的性能,改进了线圈、磁路结构,提高了发生器耦合效率;优化了高压电极结构,改善了电极周围电场分布,提升了发生器的绝缘性能,并评估了发生器高压击穿故障时的特性;选取了匹配的无功补偿方式,提高了发生器的功率因数。设计出新型热辐射间热式强流电子枪,研究了六硼化镧、六硼化镧钡两种材料热阴极的发射特性,均获得300mA以上的稳定束流发射。分析了DG型束流加速、传输结构,改进了引出系统结构,提高了束流引出效率;构建了基于PLC的工业化加速器控制系统,运行状况良好。通过专家测试,DG-1.2型已经达到设计参数1.2MeV/40mA,并能够稳定运行在1.2MeV/50mA;DG-2.5型,1.6MeV/30mA下通过测试,能够调试到2.0MeV/40mA。 最后,分析了DG系列电子加速器的进一步发展方向,初步确定了DG加速器的产业化目标
Resumo:
兰州重离子加速器冷却储存环(HIRFL-CSR),作为一个新型加速器,对监控它运行的探测器性能提出了新的要求,研制新型、高精度、高性能的探测器是CSR建立的必然要求。我们为它设计了两种基于二次电子的飞行时间探测器。该探测器具有极好的时间分辨、非常少的能损和多重散射。特别在超重粒子的合成试验中,探测超重粒子非常合适。本论文包括四个章节。第一章综述了飞行时间探测器技术,简单介绍了RIBLL的飞行时间系统和CSR的飞行时间系统以及测量飞行时间的基本原理;并简单介绍了CSR束流诊断系统束流诊断元件的分布、种类及参数和本论文的研究工作及意义。第二章是和本论文飞行时间探测器有关的一些知识。简要阐述了二次电子发射原理;并对探测器用到的主要放大元件微通道板作了详细介绍。第三章和第四章详细论述了研制的两种基于二次电子的飞行时间探测器。它们分别采用电场和磁场将二次电子偏转到微通道板上放大来得到时间信号。详细介绍了探测器的结构、参数;并测量了它们的时间分辨。此外,还研制了一种非拦截式的束流诊断元件一一容性相位探针,包括探针的结构及测试结果。
Resumo:
The influence of the rigidity of polymer backbones on the side-chain crystallization and phase transition behavior was systematically investigated by a combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), and high-resolution solid-state nuclear magnetic resonance spectroscopy (NMR). DSC investigation indicated that the crystallization number of alkyl carbon atoms of the side chains grafted onto the rigid polymer backbone, poly(p-benzamide) (PBA), is much lower than that of the alkyl carbon atoms of the side chains grafted onto the flexible polymer backbone, poly(ethyleneimine) (PEI), implying that the conformational state of the polymer backbones has a strong effect on the side-chain crystallization behavior in comblike polymers. WAXD and FTIR results proved that these two comblike polymers pack into hexagonal (PBA18C) and orthorhombic (PEI18C) crystals, respectively, depending on the adjusting ability of the polymer backbones for particular conformational states. It was also found that the presence of the crystalline-amorphous interphase (delta = 31.6 ppm) in PBA18C detected by solid-state C-13 NMR spectroscopy can be attributed to the rigid PBA backbone, which restricts the mobility of the alkyl side chains.
Resumo:
The interfacial tension sigma between two polyisobutylenes (PIB) of dissimilar polydispersity and two polydisperse samples of poly(dimethylsiloxane) (PDMS) was measured as a function of time by means of a pendent drop apparatus at different temperatures ranging from 30 to 110 degreesC. In addition to three of the four possible binary blends, the time evolution of sigma was also determined for one ternary system, where the PIB phase contained 0.03 wt % of a diblock copolymer poly(isobutylene-b-dimethylsiloxane). The pronounced decrease of sigma with advancing time, observed in all cases, is attributed to the migration of the interfacially active lower molecular weight components of the homopolymers and of the compatibilizer into the interphase. Several days are normally required until a becomes constant. These time independent values are not considered as equilibrium data, but accredited to stationary states. A kinetic model is established for sigma(t), which enables a detailed investigation of the rates of transport of the different migrating species of average molar mass of M.
Resumo:
The analysis of the small angle X-ray scattering (SAXS) data was based upon particle characteristic function, one-dimensional electron-density correlation function and particle distribution function. The microstructure of nylon 66 with different degrees of crystallinity was studied by means of X-ray scattering method. The radius of gyration R-g, the Porod radius R-p, the thickness of crystalline region L-c the thickness of non-crystalline region L-n, the thickness of interphase region d(tr), the long period L, the semiaxises of particles (a, a, b), the distribution of the particle sizes and the scattering invariant were calculated. The results indicate that there was a significant interphase region between the crystalline region and the non-crystalline region. and its content (W-t,W-x) should not be neglected in comparison with that of crystalline region W-c,W-x. The morphology of nylon 66 prepared by isothermal crystallization at a high temperature was mainly a lamellar structure, while the spherical crystals dominated in the quenched sample. The size of the particles in the quenched sample was smaller than that of those in the isothermally crystallized sample. and the distribution of the particle sizes in the isothermally crystallized sample was wider.
Resumo:
Differential scanning calorimeter (DSC), wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and density techniques have been used to investigate the structural parameters of the solid state of Nylon 11 annealed at different temperatures. The equilibrium heat of fusion Delta H-m(0) and equilibrium melting temperature T-m(0) were estimated to be 189.05 J g(-1) and 202.85 degrees C respectively by using the Hoffman-Weeks approach. The degree of crystallinity (W-c,W-x) ranged approximately 24-42% was calculated by WAXD and compared with those by calorimetry (W-c,W-h) and density (W-c,W-d) measurements. The radius of gyration R-g, crystalline thickness L-c, noncrystalline thickness L-a, long period L, semiaxes of the particles (a, b), electron-density difference between the crystalline and noncrystalline regions eta(c) - eta(a), and the invariant Q increased with increasing annealing temperature. The analysis of the SAXS data was based upon the particle characteristic function and the one-dimensional electron-density correlation function. An interphase region existed between the crystalline and noncrystalline region with a clear dimension of about 2 nm for semicrystalline Nylon 11. Instead of the traditional two-phase model, a three-phase model has been proposed to explain these results by means of SAXS.