876 resultados para Internal emigration
Resumo:
Abstract Large-Eddy Simulation (LES) and hybrid Reynolds-averaged Navier–Stokes–LES (RANS–LES) methods are applied to a turbine blade ribbed internal duct with a 180° bend containing 24 pairs of ribs. Flow and heat transfer predictions are compared with experimental data and found to be in agreement. The choice of LES model is found to be of minor importance as the flow is dominated by large geometric scale structures. This is in contrast to several linear and nonlinear RANS models, which display turbulence model sensitivity. For LES, the influence of inlet turbulence is also tested and has a minor impact due to the strong turbulence generated by the ribs. Large scale turbulent motions destroy any classical boundary layer reducing near wall grid requirements. The wake-type flow structure makes this and similar flows nearly Reynolds number independent, allowing a range of flows to be studied at similar cost. Hence LES is a relatively cheap method for obtaining accurate heat transfer predictions in these types of flows.
Resumo:
The coalescence and mixing of a sessile and an impacting liquid droplet on a solid surface are studied experimentally and numerically in terms of lateral separation and droplet speed. Two droplet generators are used to produce differently colored droplets. Two high-speed imaging systems are used to investigate the impact and coalescence of the droplets in color from a side view with a simultaneous gray-scale view from below. Millimeter-sized droplets were used with dynamical conditions, based on the Reynolds and Weber numbers, relevant to microfluidics and commercial inkjet printing. Experimental measurements of advancing and receding static contact angles are used to calibrate a contact angle hysteresis model within a lattice Boltzmann framework, which is shown to capture the observed dynamics qualitatively and the final droplet configuration quantitatively. Our results show that no detectable mixing occurs during impact and coalescence of similar-sized droplets, but when the sessile droplet is sufficiently larger than the impacting droplet vortex ring generation can be observed. Finally we show how a gradient of wettability on the substrate can potentially enhance mixing.
Resumo:
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.
Resumo:
Spatiotemporal variations of P species and adsorption behavior in water column, interstitial water, and sediments were investigated in the large shallow eutrophic Lake Chaohu. Orthophosphate (Ortho-P) and total phosphorus (TP) concentrations were significantly higher in the western part than in the eastern part of the lake, due to different nutrient inputs from the surrounding rivers. Moreover, particulate phosphorus (PP) concentration was in a similar spatial pattern to Ortho-P and TIP concentrations, and also showed significantly positive correlation with the biomass of Microcystis, indicating more uptake and store of phosphorus by Microcystis than by other algae. Increase of pH and intensive utilization of P by phytoplankton were the main factors promoting P (especially Fe-P) release from the sediment to interstitial water during the cyanobacterial blooms in Lake Chaohu. Spatial dynamics in TP concentration, P species and adsorption behavior of the sediment, coupled with the statistical analyses, suggested that the spatial heterogeneity of P contents in the sediment was influenced by various factors, e.g. human activities, soil geochemistry and mineral composition. In spite of similar TP contents in the sediments, increase in proportion of Fe-P concentration in the sediment may result in a high risk of P release.
Resumo:
Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang,and Lake Lianhua). Phosphatase activity was related to the concentration of soluble reactive phosphorus (SRP) and chlorophyll a. Stability of dissolved phosphatase in reverse micelles may be attributed to molecular size, conformation and active residues of the enzyme. At the site with Microcystis bloomed in Lake Taihu, dissolved phosphatase activity was higher and more stable in micelles, SRP concentrations were lower in interstitial water, the contents of different forms of phosphorus and the amounts of aerobic bacteria were lower while respiration efficiency was higher in sediments. Phosphobacteria, both inorganic and organic and other microorganisms were abundant in surface water but rare in sediments. Therefore, internal phosphorus may substantially flux into water column by enzymatic hydrolysis and anaerobic release, together with mobility of bacteria, thereby initiating the bloom. In short, biological mechanism may act in concert with physical and chemical factors to drive the internal phosphorus release and accelerate lake eutrophication.
Resumo:
The internal reflection of the multimode-interference (MMI)-type device is calculated with the bidirectional beam propagation method. The calculated results indicate that the difference of the effective refractive indices between the core region and the surrounding region has a determining effect on the internal reflection of the MMI-type device. The output taper for the MMI-type combiner and splitter has a more evident effect on the internal reflection than the input taper. The internal reflection decreases with increasing the end width of the taper. For the MMI-type device with appropriate tapers, the internal reflection does not show evident degradation with the deviation of the length of the MMI region from its optimal value. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A folding rearrangeable nonblocking 4 x 4 optical matrix switch was designed and fabricated on silicon-on-insulator wafer. To compress chip size, switch elements (SEs) were interconnected by total internal reflection (TIR) mirrors instead of conventional S-bends. For obtaining smooth interfaces, potassium hydroxide anisotropic chemical etching of silicon was utilized to make the matrix switch for the first time. The device has a compact size of 20 x 1.6 mm(2) and a fast response of 7.5 mu s. The power consumption of each 2 x 2 SE and the average excess loss per mirror were 145 mW and -1.1 dB, respectively. Low path dependence of +/- 0.7 dB in total excess loss was obtained because of the symmetry of propagation paths in this novel matrix switch.
Resumo:
A compact optical switch matrix was designed, in which light circuits were folded by total internal reflective (TIR) mirrors. Two key elements, 2 x 2 switch and TIR mirror, have been fabricated on silicon-on-insulator wafer by anisotropy chemical etching. The 2 x 2 switch showed very low power consumption of 140 mW and a very high speed of 8 +/- 1 mus. An improved design for the TIR mirror was developed, and the fabricated mirror with smooth and vertical reflective facet showed low excess loss of 0.7 +/- 0.3 dB at 1.55 mum.
Resumo:
Under selective photo-excitation, the capacitance response of internal tunnelling coupling in quantum-dots-imbedded heterostructures is studied to clarify the electronic states and the number densities of electrons filling in the quantum dots (QDs). The random nature for both optical transitions and the filling in a QD assembly makes highly resolved capacitance peaks appear in the C-V characteristic after turning off the photo-excitation.
Resumo:
We present a new way to meet the amount of strain relaxation in an InGaN quantum well layer grown on relaxed GaN by calculating and measuring its internal field. With perturbation theory, we also calculate the transition energy of InGaN/GaN SQWs as affected by internal fields. The newly reported experimental data by Graham et al. fit our calculations well on the assumption that the InGaN well layer suffered a 20% strain relaxation, we discuss the differences between our calculated results and the experimental data. Our calculation suggests that with the increase of indium mole fraction in the InGaN/GaN quantum well, the effect of polarization fields on the luminescence of the quantum well will increase. Moreover, our calculation also suggests that an increase in the quantum well width by only one monolayer can result in a large reduction in the transition energy. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
SOI (Silicon on Insulator) based photonic devices has attracted more and more attention in the recent years. Integration of SOI optical switch matrix with isolating grooves, total internal reflection (TIR) mirrors and spot size converter (SSC) was studied. A folding re-arrangeable non-blocking 4x4 optical switch matrix and a blocking 16x16 matrix with TIR mirrors and SSC were fabricated on SOI wafer. The performaces, including extinction ratio and the crosstalk, are better than before. The insertion loss and the polarization dependent loss (PDL) at 1.55 mu m increase slightly with longer device length, more bend and intersecting waveguides. The insertion losses decrease 2 similar to 3 dB when anti-reflection films are added in the ends of the devices. The rise and fall times of the devices are 2.1 mu s and 2.3 mu s, respectively.