880 resultados para Intelligence and employees
Resumo:
Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.
Resumo:
Estimated 638,400 persons suffered a work-related injury or illness in 2009-2010 and 337 lost their lives as a result in 2009-2010. In 2013-2014, there were 186 fatalities with 29 (16%) occurring in construction. Very little is known about what proportion of accidents are directly attributable to the effects of AOD. Anecdotal evidence highlights issues of AOD and its association with safety risk on construction sites. Research Objective: • To scientifically evaluate the relationship between the use of AOD and the safety impacts within the Australian construction industry to engender a cultural change in the workforce • A nationally consistent and collaborative approach involving government, employers and employees, unions and other key industry stakeholders
Resumo:
The idea of extracting knowledge in process mining is a descendant of data mining. Both mining disciplines emphasise data flow and relations among elements in the data. Unfortunately, challenges have been encountered when working with the data flow and relations. One of the challenges is that the representation of the data flow between a pair of elements or tasks is insufficiently simplified and formulated, as it considers only a one-to-one data flow relation. In this paper, we discuss how the effectiveness of knowledge representation can be extended in both disciplines. To this end, we introduce a new representation of the data flow and dependency formulation using a flow graph. The flow graph solves the issue of the insufficiency of presenting other relation types, such as many-to-one and one-to-many relations. As an experiment, a new evaluation framework is applied to the Teleclaim process in order to show how this method can provide us with more precise results when compared with other representations.
Resumo:
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.
Resumo:
Detect and Avoid (DAA) technology is widely acknowledged as a critical enabler for unsegregated Remote Piloted Aircraft (RPA) operations, particularly Beyond Visual Line of Sight (BVLOS). Image-based DAA, in the visible spectrum, is a promising technological option for addressing the challenges DAA presents. Two impediments to progress for this approach are the scarcity of available video footage to train and test algorithms, in conjunction with testing regimes and specifications which facilitate repeatable, statistically valid, performance assessment. This paper includes three key contributions undertaken to address these impediments. In the first instance, we detail our progress towards the creation of a large hybrid collision and near-collision encounter database. Second, we explore the suitability of techniques employed by the biometric research community (Speaker Verification and Language Identification), for DAA performance optimisation and assessment. These techniques include Detection Error Trade-off (DET) curves, Equal Error Rates (EER), and the Detection Cost Function (DCF). Finally, the hybrid database and the speech-based techniques are combined and employed in the assessment of a contemporary, image based DAA system. This system includes stabilisation, morphological filtering and a Hidden Markov Model (HMM) temporal filter.
Resumo:
Background: Opiod dependence is a chronic severe brain disorder associated with enormous health and social problems. The relapse back to opioid abuse is very high especially in early abstinence, but neuropsychological and neurophysiological deficits during opioid abuse or soon after cessation of opioids are scarcely investigated. Also the structural brain changes and their correlations with the length of opioid abuse or abuse onset age are not known. In this study the cognitive functions, neural basis of cognitive dysfunction, and brain structural changes was studied in opioid-dependent patients and in age and sex matched healthy controls. Materials and methods: All subjects participating in the study, 23 opioid dependents of whom, 15 were also benzodiazepine and five cannabis co-dependent and 18 healthy age and sex matched controls went through Structured Clinical Interviews (SCID) to obtain DSM-IV axis I and II diagnosis and to exclude psychiatric illness not related to opioid dependence or personality disorders. Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) measurements were done on 21 opioid-dependent individuals on the day of hospitalization for withdrawal therapy. The neural basis of auditory processing was studied and pre-attentive attention and sensory memory were investigated. During the withdrawal 15 opioid-dependent patients participated in neuropsychological tests, measuring fluid intelligence, attention and working memory, verbal and visual memory, and executive functions. Fifteen healthy subjects served as controls for the MEG-EEG measurements and neuropsychological assessment. The brain magnetic resonance imaging (MRI) was obtained from 17 patients after approximately two weeks abstinence, and from 17 controls. The areas of different brain structures and the absolute and relative volumes of cerebrum, cerebral white and gray matter, and cerebrospinal fluid (CSF) spaces were measured and the Sylvian fissure ratio (SFR) and bifrontal ratio were calculated. Also correlation between the cerebral measures and neuropsychological performance was done. Results: MEG-EEG measurements showed that compared to controls the opioid-dependent patients had delayed mismatch negativity (MMN) response to novel sounds in the EEG and P3am on the contralateral hemisphere to the stimulated ear in MEG. The equivalent current dipole (ECD) of N1m response was stronger in patients with benzodiazepine co-dependence than those without benzodiazepine co-dependence or controls. In early abstinence the opioid dependents performed poorer than the controls in tests measuring attention and working memory, executive function and fluid intelligence. Test results of the Culture Fair Intelligence Test (CFIT), testing fluid intelligence, and Paced Auditory Serial Addition Test (PASAT), measuring attention and working memory correlated positively with the days of abstinence. MRI measurements showed that the relative volume of CSF was significantly larger in opioid dependents, which could also be seen in visual analysis. Also Sylvian fissures, expressed by SFR were wider in patients, which correlated negatively with the age of opioid abuse onset. In controls the relative gray matter volume had a positive correlation with composite cognitive performance, but this correlation was not found in opioid dependents in early abstinence. Conclusions: Opioid dependents had wide Sylvian fissures and CSF spaces indicating frontotemporal atrophy. Dilatation of Sylvian fissures correlated with the abuse onset age. During early withdrawal cognitive performance of opioid dependents was impaired. While intoxicated the pre-attentive attention to novel stimulus was delayed and benzodiazepine co-dependence impaired sound detection. All these changes point to disturbances on frontotemporal areas.
Resumo:
This clinical study focused on effects of childhood specific language impairment (SLI) on daily functioning in late life. SLI is a neurobiological disorder with genetic predisposition and manifests as poor language production or comprehension or both in a child with age-level non-verbal intelligence and no other known cause for deficient language development. The prevalence rate of around 7% puts it among the most prevalent developmental disorders in childhood. Negative long-term effects, such as problems in learning and behavior, are frequent. In follow-up studies the focus has seldom been on self-perception of daily functioning and participation, which are considered important in the International Classification of Functioning, Disability, and Health (ICF). To investigate the self-perceived aspects of everyday functioning in individuals with childhood receptive SLI compared with age- and gender-matched control populations, the 15D, 16D, and 17D health-related quality of life (HRQoL) questionnaires were applied. These generic questionnaires include 15, 16, and 17 dimensions, respectively, and give both a single index score and a profile with values on each dimension. Information on different life domains (rehabilitation, education, employment etc.) from each age-group was collected with separate questionnaires. The study groups comprised adults, adolescents (12-16 years), and pre-adolescents (8-11 years) who had received a diagnosis of receptive SLI and had been examined, usually before school age, at the Department of Phoniatrics of Helsinki University Central Hospital, where children with language deficits caused by various etiologies are examined and treated by a multidisciplinary team. The adult respondents included 33 subjects with a mean age of 34 years. Measured with 15D, the subjects perceived their HRQoL to be nearly as good as that of their controls, but on the dimensions of speech, usual activities, mental functioning, and distress they were significantly worse off. They significantly more often lived with their parents (19%) or were pensioned (26%) than the adult Finnish population on average. Adults with self-perceived problems in finding words and in remembering instructions, manifestations of persistent language impairment, showed inferior every day functioning to the rest of the study group. Of the adolescents and pre-adolescents, 48 and 51, respectively, responded. The majority in both groups had received special education or extra educational support at school. They all had attended speech therapy at some point; at the time of the study only one adolescent, but every third pre-adolescent still received speech therapy. The 16D score of the adolescent or the 17D score of the pre-adolescents did not differ from that of their controls. The 16D profiles differed on some dimensions; subjects were significantly worse off on the dimension of mental functioning, but better off on the dimension of vitality than controls. Of the 17D dimensions, the study group was significantly worse off on speech, whereas the control group reported significantly more problems in sleeping. Of the childhood performance measures investigated, low verbal intelligence quotient (VIQ), which is often considered to reflect receptive language impairment, was in adults subjects significantly associated with some of the self-perceived problems, such as problems in usual activities and mental functioning. The 15D, 16D, and 17D questionnaires served well in measuring self-perceived HRQoL. Such standardized measures with population values are especially important in confirming with the ICF guidelines. In the future these questionnaires could perhaps be used on a more individual level in follow-up of children in clinics, and even in special schools and classes, to detect those children at greatest risk of negative long-term effects and perhaps diminished well-being regarding daily functioning and participation.
Resumo:
A unit cube in k dimensions (k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), a(i) + 1] on the real line. A graph G on n nodes is said to be representable as the intersection of k-cubes (cube representation in k dimensions) if each vertex of C can be mapped to a k-cube such that two vertices are adjacent in G if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G denoted as cub(G) is the minimum k for which G can be represented as the intersection of k-cubes. An interesting aspect about cubicity is that many problems known to be NP-complete for general graphs have polynomial time deterministic algorithms or have good approximation ratios in graphs of low cubicity. In most of these algorithms, computing a low dimensional cube representation of the given graph is usually the first step. We give an O(bw . n) algorithm to compute the cube representation of a general graph G in bw + 1 dimensions given a bandwidth ordering of the vertices of G, where bw is the bandwidth of G. As a consequence, we get O(Delta) upper bounds on the cubicity of many well-known graph classes such as AT-free graphs, circular-arc graphs and cocomparability graphs which have O(Delta) bandwidth. Thus we have: 1. cub(G) <= 3 Delta - 1, if G is an AT-free graph. 2. cub(G) <= 2 Delta + 1, if G is a circular-arc graph. 3. cub(G) <= 2 Delta, if G is a cocomparability graph. Also for these graph classes, there axe constant factor approximation algorithms for bandwidth computation that generate orderings of vertices with O(Delta) width. We can thus generate the cube representation of such graphs in O(Delta) dimensions in polynomial time.
Resumo:
This paper describes an approach based on Zernike moments and Delaunay triangulation for localization of hand-written text in machine printed text documents. The Zernike moments of the image are first evaluated and we classify the text as hand-written using the nearest neighbor classifier. These features are independent of size, slant, orientation, translation and other variations in handwritten text. We then use Delaunay triangulation to reclassify the misclassified text regions. When imposing Delaunay triangulation on the centroid points of the connected components, we extract features based on the triangles and reclassify the text. We remove the noise components in the document as part of the preprocessing step so this method works well on noisy documents. The success rate of the method is found to be 86%. Also for specific hand-written elements such as signatures or similar text the accuracy is found to be even higher at 93%.
Resumo:
In document images, we often find printed lines over-lapping with hand written elements especially in case of signatures. Typical examples of such images are bank cheques and payment slips. Although the detection and removal of the horizontal lines has been addressed, the restoration of the handwritten area after removal of lines, persists to be a problem of interest. lit this paper, we propose a method for line removal and restoration of the erased areas of the handwritten elements. Subjective evaluation of the results have been conducted to analyze the effectiveness of the proposed method. The results are promising with an accuracy of 86.33%. The entire Process takes less than half a second for completion on a 2.4 GHz 512 MB RAM Pentium IV PC for a document image.
Resumo:
Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.
Resumo:
XML has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Self Adaptive Migration Model Genetic Algorithm (SAMCA)[5] and multi class Support Vector Machine (SVM) are used to learn a user model. Based on the feedback from the users the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.
Resumo:
Parliaments are political institutions, but they are also places where people work; the MPs and the people who are employed there work, albeit in rather different ways. In this research the focus is on those in a Parliament who work there as employees and managers, and thereby, in some senses, run the organisation. Accordingly, this involves seeing the Parliament as a working environment, for MPs and employees, for men and women. The institution of Parliament is thus here examined by looking at it from a different and new angle. Instead of the usual focus on politicians the focus is on the administration of this institution. The aim is, amongst other things, to increase knowledge and offer different perspectives on democracy and democratic institutions. Unpacking the nearly mythical institution into smaller, more digestible, graspable realities should at the very least help to remind the wider society that although nations, to a certain extent, do need national institutions they should not become mystified or seen as larger than life. Institutions should work on behalf of people and thus be accountable to these same people. The main contribution of this work is to explore and problematise how managing and working is done inside an institution that both largely fulfils the characteristics of a bureaucracy and yet also has added special features that seem to be rather far removed from clear bureaucratic structures. This research offers a new kind of information on working life inside this elite institution. The joys and the struggles of working and managing in this particular public sector organisation are illustrated here and offer a view, a glimpse, into the experiences of managing and working in this House.