929 resultados para Implied volatility
Resumo:
In this dissertation, I investigate three related topics on asset pricing: the consumption-based asset pricing under long-run risks and fat tails, the pricing of VIX (CBOE Volatility Index) options and the market price of risk embedded in stock returns and stock options. These three topics are fully explored in Chapter II through IV. Chapter V summarizes the main conclusions. In Chapter II, I explore the effects of fat tails on the equilibrium implications of the long run risks model of asset pricing by introducing innovations with dampened power law to consumption and dividends growth processes. I estimate the structural parameters of the proposed model by maximum likelihood. I find that the stochastic volatility model with fat tails can, without resorting to high risk aversion, generate implied risk premium, expected risk free rate and their volatilities comparable to the magnitudes observed in data. In Chapter III, I examine the pricing performance of VIX option models. The contention that simpler-is-better is supported by the empirical evidence using actual VIX option market data. I find that no model has small pricing errors over the entire range of strike prices and times to expiration. In general, Whaley’s Black-like option model produces the best overall results, supporting the simpler-is-better contention. However, the Whaley model does under/overprice out-of-the-money call/put VIX options, which is contrary to the behavior of stock index option pricing models. In Chapter IV, I explore risk pricing through a model of time-changed Lévy processes based on the joint evidence from individual stock options and underlying stocks. I specify a pricing kernel that prices idiosyncratic and systematic risks. This approach to examining risk premia on stocks deviates from existing studies. The empirical results show that the market pays positive premia for idiosyncratic and market jump-diffusion risk, and idiosyncratic volatility risk. However, there is no consensus on the premium for market volatility risk. It can be positive or negative. The positive premium on idiosyncratic risk runs contrary to the implications of traditional capital asset pricing theory.
Resumo:
We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.
Resumo:
The paper develops a novel realized matrix-exponential stochastic volatility model of multivariate returns and realized covariances that incorporates asymmetry and long memory (hereafter the RMESV-ALM model). The matrix exponential transformation guarantees the positivedefiniteness of the dynamic covariance matrix. The contribution of the paper ties in with Robert Basmann’s seminal work in terms of the estimation of highly non-linear model specifications (“Causality tests and observationally equivalent representations of econometric models”, Journal of Econometrics, 1988, 39(1-2), 69–104), especially for developing tests for leverage and spillover effects in the covariance dynamics. Efficient importance sampling is used to maximize the likelihood function of RMESV-ALM, and the finite sample properties of the quasi-maximum likelihood estimator of the parameters are analysed. Using high frequency data for three US financial assets, the new model is estimated and evaluated. The forecasting performance of the new model is compared with a novel dynamic realized matrix-exponential conditional covariance model. The volatility and co-volatility spillovers are examined via the news impact curves and the impulse response functions from returns to volatility and co-volatility.
Resumo:
Peer reviewed
Resumo:
In this article we investigate voter volatility and analyze the causes and motives of switching vote intentions. We test two main sets of variables linked to volatility in literature; political sophistication and ‘political (dis)satisfaction’. Results show that voters with low levels of political efficacy tend to switch more often, both within a campaign and between elections. In the analysis we differentiate between campaign volatility and inter-election volatility and by doing so show that the dynamics of a campaign have a profound impact on volatility. The campaign period is when the lowly sophisticated switch their vote intention. Those with higher levels of interest in politics have switched their intention before the campaign has started. The data for this analysis are from the three wave PartiRep Belgian Election Study (2009).
Resumo:
The paper empirically tests the relationship between earnings volatility and cost of debt with a sample of more than 77,000 Swedish limited companies over the period 2006 to 2013 observing more than 677,000 firm years. As called upon by many researchers recently that there is very limited evidence of the association between earnings volatility and cost of debt this paper contributes greatly to the existing literature of earnings quality and debt contracts, especially on the consequence of earnings quality in the debt market. Earnings volatility is a proxy used for earnings quality while cost of debt is a component of debt contract. After controlling for firms’ profitability, liquidity, solvency, cashflow volatility, accruals volatility, sales volatility, business risk, financial risk and size this paper studies the effect of earnings volatility measured by standard deviation of Earnings Before Interest, Taxes, Depreciation and Amortization (EBITDA) on Cost of Debt. Overall finding suggests that lenders in Sweden does take earnings volatility into consideration while determining cost of debt for borrowers. But a deeper analysis of various industries suggest earnings volatility is not consistently used by lenders across all the industries. Lenders in Sweden are rather more sensitive to borrowers’ financial risk across all the industries. It may also be stated that larger borrowers tend to secure loans at a lower interest rate, the results are consistent with majority of the industries. Swedish debt market appears to be well prepared for financial crises as the debt crisis seems to have no or little adverse effect borrowers’ cost of capital. This study is the only empirical evidence to study the association between earnings volatility and cost of debt. Prior indirect research suggests earnings volatility has a negative effect on cost debt (i.e. an increase in earnings volatility will increase firm’s cost of debt). Our direct evidence from the Swedish debt market is consistent for some industries including media, real estate activities, transportation & warehousing, and other consumer services.
Resumo:
The value premium is well established in empirical asset pricing, but to date there is little understanding as to its fundamental drivers. We use a stochastic earnings valuation model to establish a direct link between the volatility of future earnings growth and firm value. We illustrate that risky earnings growth affects growth and value firms differently. We provide empirical evidence that the volatility of future earnings growth is a significant determinant of the value premium. Using data on individual firms and characteristic-sorted test portfolios, we also find that earnings growth volatility is significant in explaining the cross-sectional variation of stock returns. Our findings imply that the value premium is the rational consequence of accounting for risky earnings growth in the firm valuation process.
Resumo:
This paper describes an parallel semi-Lagrangian finite difference approach to the pricing of early exercise Asian Options on assets with a stochastic volatility. A multigrid procedure is described for the fast iterative solution of the discrete linear complementarity problems that result. The accuracy and performance of this approach is improved considerably by a strike-price related analytic transformation of asset prices. Asian options are contingent claims with payoffs that depend on the average price of an asset over some time interval. The payoff may depend on this average and a fixed strike price (Fixed Strike Asians) or it may depend on the average and the asset price (Floating Strike Asians). The option may also permit early exercise (American contract) or confine the holder to a fixed exercise date (European contract). The Fixed Strike Asian with early exercise is considered here where continuous arithmetic averaging has been used. Pricing such an option where the asset price has a stochastic volatility leads to the requirement to solve a tri-variate partial differential inequation in the three state variables of asset price, average price and volatility (or equivalently, variance). The similarity transformations [6] used with Floating Strike Asian options to reduce the dimensionality of the problem are not applicable to Fixed Strikes and so the numerical solution of a tri-variate problem is necessary. The computational challenge is to provide accurate solutions sufficiently quickly to support realtime trading activities at a reasonable cost in terms of hardware requirements.
Resumo:
This dissertation contains four essays that all share a common purpose: developing new methodologies to exploit the potential of high-frequency data for the measurement, modeling and forecasting of financial assets volatility and correlations. The first two chapters provide useful tools for univariate applications while the last two chapters develop multivariate methodologies. In chapter 1, we introduce a new class of univariate volatility models named FloGARCH models. FloGARCH models provide a parsimonious joint model for low frequency returns and realized measures, and are sufficiently flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the performances of the models in a realistic numerical study and on the basis of a data set composed of 65 equities. Using more than 10 years of high-frequency transactions, we document significant statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and forecasting accuracy compared to classical and Realized GARCH models. In chapter 2, using 12 years of high-frequency transactions for 55 U.S. stocks, we argue that combining low-frequency exogenous economic indicators with high-frequency financial data improves the ability of conditionally heteroskedastic models to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-period Value-at-Risk. Using a refined version of the Realized LGARCH model allowing for time-varying intercept and implemented with realized kernels, we document that nominal corporate profits and term spreads have strong long-run predictive ability and generate accurate risk measures forecasts over long-horizon. The results are based on several loss functions and tests, including the Model Confidence Set. Chapter 3 is a joint work with David Veredas. We study the class of disentangled realized estimators for the integrated covariance matrix of Brownian semimartingales with finite activity jumps. These estimators separate correlations and volatilities. We analyze different combinations of quantile- and median-based realized volatilities, and four estimators of realized correlations with three synchronization schemes. Their finite sample properties are studied under four data generating processes, in presence, or not, of microstructure noise, and under synchronous and asynchronous trading. The main finding is that the pre-averaged version of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated covariances on the basis of noisy and asynchronous prices. Along these lines, a minimum variance portfolio application shows the superiority of this disentangled realized estimator in terms of numerous performance metrics. Chapter 4 is co-authored with Niels S. Hansen, Asger Lunde and Kasper V. Olesen, all affiliated with CREATES at Aarhus University. We propose to use the Realized Beta GARCH model to exploit the potential of high-frequency data in commodity markets. The model produces high quality forecasts of pairwise correlations between commodities which can be used to construct a composite covariance matrix. We evaluate the quality of this matrix in a portfolio context and compare it to models used in the industry. We demonstrate significant economic gains in a realistic setting including short selling constraints and transaction costs.
Resumo:
unpublished
Resumo:
We estimate the monthly volatility of the US economy from 1968 to 2006 by extending the coincidentindex model of Stock and Watson (1991). Our volatility index, which we call VOLINX, hasfour applications. First, it sheds light on the Great Moderation. VOLINX captures the decrease in thevolatility in the mid-80s as well as the different episodes of stress over the sample period. In the 70sand early 80s the stagflation and the two oil crises marked the pace of the volatility whereas 09/11 is themost relevant shock after the moderation. Second, it helps to understand the economic indicators thatcause volatility. While the main determinant of the coincident index is industrial production, VOLINXis mainly affected by employment and income. Third, it adapts the confidence bands of the forecasts.In and out-of-sample evaluations show that the confidence bands may differ up to 50% with respect to amodel with constant variance. Last, the methodology we use permits us to estimate monthly GDP, whichhas conditional volatility that is partly explained by VOLINX. These applications can be used by policymakers for monitoring and surveillance of the stress of the economy.
Resumo:
International research shows that low-volatility stocks have beaten high-volatility stocks in terms of returns for decades on multiple markets. This abbreviation from traditional risk-return framework is known as low-volatility anomaly. This study focuses on explaining the anomaly and finding how strongly it appears in NASDAQ OMX Helsinki stock exchange. Data consists of all listed companies starting from 2001 and ending close to 2015. Methodology follows closely Baker and Haugen (2012) by sorting companies into deciles according to 3-month volatility and then calculating monthly returns for these different volatility groups. Annualized return for the lowest volatility decile is 8.85 %, while highest volatility decile destroys wealth at rate of -19.96 % per annum. Results are parallel also in quintiles that represent larger amount of companies and thus dilute outliers. Observation period captures financial crisis of 2007-2008 and European debt crisis, which embodies as low main index annual return of 1 %, but at the same time proves the success of low-volatility strategy. Low-volatility anomaly is driven by multiple reasons such as leverage constrained trading and managerial incentives which both prompt to invest in risky assets, but behavioral matters also have major weight in maintaining the anomaly.
Resumo:
This Ph.D. thesis contains 4 essays in mathematical finance with a focus on pricing Asian option (Chapter 4), pricing futures and futures option (Chapter 5 and Chapter 6) and time dependent volatility in futures option (Chapter 7). In Chapter 4, the applicability of the Albrecher et al.(2005)'s comonotonicity approach was investigated in the context of various benchmark models for equities and com- modities. Instead of classical Levy models as in Albrecher et al.(2005), the focus is the Heston stochastic volatility model, the constant elasticity of variance (CEV) model and the Schwartz (1997) two-factor model. It is shown that the method delivers rather tight upper bounds for the prices of Asian Options in these models and as a by-product delivers super-hedging strategies which can be easily implemented. In Chapter 5, two types of three-factor models were studied to give the value of com- modities futures contracts, which allow volatility to be stochastic. Both these two models have closed-form solutions for futures contracts price. However, it is shown that Model 2 is better than Model 1 theoretically and also performs very well empiri- cally. Moreover, Model 2 can easily be implemented in practice. In comparison to the Schwartz (1997) two-factor model, it is shown that Model 2 has its unique advantages; hence, it is also a good choice to price the value of commodity futures contracts. Fur- thermore, if these two models are used at the same time, a more accurate price for commodity futures contracts can be obtained in most situations. In Chapter 6, the applicability of the asymptotic approach developed in Fouque et al.(2000b) was investigated for pricing commodity futures options in a Schwartz (1997) multi-factor model, featuring both stochastic convenience yield and stochastic volatility. It is shown that the zero-order term in the expansion coincides with the Schwartz (1997) two-factor term, with averaged volatility, and an explicit expression for the first-order correction term is provided. With empirical data from the natural gas futures market, it is also demonstrated that a significantly better calibration can be achieved by using the correction term as compared to the standard Schwartz (1997) two-factor expression, at virtually no extra effort. In Chapter 7, a new pricing formula is derived for futures options in the Schwartz (1997) two-factor model with time dependent spot volatility. The pricing formula can also be used to find the result of the time dependent spot volatility with futures options prices in the market. Furthermore, the limitations of the method that is used to find the time dependent spot volatility will be explained, and it is also shown how to make sure of its accuracy.