290 resultados para IXODES-RICINUS
Resumo:
The cells of the endosperm of castor bean seeds (Ricinus communis) undergo programmed cell death during germination, after their oil and protein reserves have been mobilized. Nuclear DNA fragmentation first was observed at day 3 in the endosperm cells immediately adjacent to the cotyledons and progressed across to the outermost cell layers by day 5. We also detected the accumulation of small organelles known as ricinosomes, by using an antibody against a cysteine endoprotease. By the time the nuclear DNA was susceptible to heavy label by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling, the ricinosomes had released into the cytoplasm their content of cysteine endoprotease, which became activated because of the cleavage of its propeptide. The cysteine endoprotease is distinguished by a C-terminal KDEL sequence, although it is not retained in the lumen of the endoplasmic reticulum and is a marker for ricinosomes. Homologous proteases are found in the senescing tissues of other plants, including the petals of the daylily. Ricinosomes were identified in this tissue by electron microscopy and immunocytochemistry. It seems that ricinosomes are not unique to Ricinus and play an important role in the degradation of plant cell contents during programmed cell death.
Resumo:
PII is a protein allosteric effector in Escherichia coli and other bacteria that indirectly regulates glutamine synthetase at the transcriptional and post-translational levels in response to nitrogen availability. Data supporting the notion that plants have a nitrogen regulatory system(s) includes previous studies showing that the levels of mRNA for plant nitrogen assimilatory genes such as glutamine synthetase (GLN) and asparagine synthetase (ASN) are modulated by carbon and organic nitrogen metabolites. Here, we have characterized a PII homolog (GLB1) in two higher plants, Arabidopsis thaliana and Ricinus communis (Castor bean). Each plant PII-like protein has high overall identity to E. coli PII (50%). Western blot analyses reveal that the plant PII-like protein is a nuclear-encoded chloroplast protein. The PII-like protein of plants appears to be regulated at the transcriptional level in that levels of GLB1 mRNA are affected by light and metabolites. To initiate studies of the in vivo function of the Arabidopsis PII-like protein, we have constructed transgenic lines in which PII expression is uncoupled from its native regulation. Analyses of these transgenic plants support the notion that the plant PII-like protein may serve as part of a complex signal transduction network involved in perceiving the status of carbon and organic nitrogen. Thus, the PII protein found in archaea, bacteria, and now in higher eukaryotes (plants) is one of the most widespread regulatory proteins known, providing evidence for an ancestral metabolic regulatory mechanism that may have existed before the divergence of these three domains of life.
Resumo:
The nucellus is a complex maternal grain tissue that embeds and feeds the developing cereal endosperm and embryo. Differential screening of a barley (Hordeum vulgare) cDNA library from 5-d-old ovaries resulted in the isolation of two cDNA clones encoding nucellus-specific homologs of the vacuolar-processing enzyme of castor bean (Ricinus communis). Based on the sequence of these barley clones, which are called nucellains, a homolog from developing corn (Zea mays) grains was also identified. In dicots the vacuolar-processing enzyme is believed to be involved in the processing of vacuolar storage proteins. RNA-blot and in situ-hybridization analyses detected nucellain transcripts in autolysing nucellus parenchyma cells, in the nucellar projection, and in the nucellar epidermis. No nucellain transcripts were detected in the highly vacuolate endosperm or in the other maternal tissues of developing grains such as the testa or the pericarp. Using an antibody raised against castor bean vacuolar-processing protease, a single polypeptide was recognized in protein extracts from barley grains. Immunogold-labeling experiments with this antibody localized the nucellain epitope not in the vacuoles, but in the cell walls of all nucellar cell types. We propose that nucellain plays a role in processing and/or turnover of cell wall proteins in developing cereal grains.
Resumo:
Nitric oxide (NO) has been implicated as a pathogenic mediator in a variety of central nervous system (CNS) disease states, including the animal model of multiple sclerosis (MS) and experimental allergic encephalomyelitis. We have examined post-mortem brain tissues collected from patients previously diagnosed with MS, as well as tissues collected from the brains of patients dying without neuropathies. Both Northern blot analysis and reverse transcriptase (RT)-driven in situ PCR (RT-in situ PCR) studies demonstrated that inducible NO synthase (iNOS) mRNA was present in the brain tissues from MS patients but was absent in equivalent tissues from normal controls. We have also performed experiments identifying the cell type responsible for iNOS expression by RT-in situ PCR in combination with immunohistochemistry. Concomitantly, we analyzed the tissues for the presence of the NO reaction product nitrotyrosine to demonstrate the presence of a protein nitrosylation adduct. We report here that iNOS mRNA was detectable in the brains of 100% of the CNS tissues from seven MS patients examined but in none of the three normal brains. RT-in situ PCR experiments also demonstrated the presence of iNOS mRNA in the cytoplasm of cells that also expressed the ligand recognized by the Ricinus communis agglutinin 1 (RCA-1), a monocyte/macrophage lineage marker. Additionally, specific labeling of cells was observed when brain tissues from MS patients were exposed to antisera reactive with nitrotyrosine residues but was significantly less plentiful in brain tissue from patients without CNS disease. These results demonstrate that iNOS, one of the enzymes responsible for the production of NO, is expressed at significant levels in the brains of patients with MS and may contribute to the pathology associated with the disease.
Resumo:
El sistema inmune es el sistema de defensa del organismo involucrado en la protección frente a microorganismos patógenos y neoplasias. Este sistema está formado por una gran variedad de células y moléculas capacitadas para reconocer específicamente estructuras moleculares o antígenos y desarrollar una respuesta inmune que conduce a su eliminación. Sin embargo, en ocasiones esta respuesta puede estar alterada provocando enfermedades derivadas de respuesta insuficiente (inmunodeficiencias, infección, neoplasias), o de respuesta excesiva (alergia, autoinmunidad, rechazo de trasplantes). La estrategia terapéutica utilizada para restaurar el correcto funcionamiento de la respuesta inmune, estimulándola o suprimiéndola, se conoce como inmunomodulación. Para lograr la inmunomodulación se utilizan agentes inmunomoduladores de naturaleza muy variada que incluyen sustancias sintéticas, recombinantes y de origen natural. Dentro de este último grupo cabe destacar a los inmunomoduladores diseñados con el objetivo de estimular mecanismos de inmunidad natural. A este grupo pertenece el fármaco español Inmunoferon®. Se trata de un inmunomodulador oral que ha demostrado capacidad para normalizar la función efectora de las células accesorias y fagocíticas, de las células NK y de los linfocitos T. Simultáneamente, inhibe la producción de TNF-α y modula la producción de otras citoquinas reguladoras (IL-1, IL-2, IL-12, IFN- γ). Se ha empleado en enfermedades diversas, como la hepatitis B crónica, la enfermedad pulmonar obstructiva crónica, la estomatitis aftosa y la inflamación muscular, entre otras. El principio activo de la especialidad Inmunoferon® es una asociación no covalente de polisacárido/proteína absorbida sobre una matriz estabilizante de sulfato y fosfato cálcicos. El polisacárido es un glucomanano de la pared de Candida utilis y el componente proteico procede de semillas no germinadas de ricino (Ricinus communis). Hasta el presente, el desconocimiento total de la naturaleza de este componente proteico ha impedido estudiar y conocer en profundidad la compleja farmacología de este fármaco...
Resumo:
In recent years there has been much progress in our understanding of the phylogeny and evolution of ticks, in particular the hard ticks (Ixodidae). Indeed, a consensus about the phylogeny of the hard ticks has emerged which is quite different to the working hypothesis of 10 years ago. So that the classification reflects our knowledge of ticks, several changes to the nomenclature of ticks are imminent or have been made. One subfamily, the Hyalomminae, should be sunk, while another, the Bothriocrotoninae, has been created (Klompen, Dobson & Barker, 2002). Bothriocrotoninae, and its sole genus Bothriocroton, have been created to house an early-diverging ('basal') lineage of endemic Australian ticks that used to be in the genus Aponomma. The remaining species of the genus Aponomma have been moved to the genus Amblyomma. Thus, the name Aponomma is no longer a valid genus name. The genus Rhipicephalus is paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus has become a subgenus of the genus Rhipicephalus (Murrell & Barker, 2003). Knowledge of the phylogenetic relationships of ticks has also provided new insights into the evolution of ornateness and of their life cycles, and has allowed the historical zoogeography of ticks to be studied. Finally, we present a list of the 899 valid genus and species names of ticks as of February 2004.
Resumo:
The saliva of ticks (Suborder Ixodida) is critical to their survival as parasites. A tick bite should result in strong responses from the host defence systems (haemostatic, immune and inflammatory) but tick saliva appears to have evolved to counter these responses. We review current knowledge of tick saliva components, with emphasis on those molecules confirmed to be present in the secreted saliva but including some that have only been confirmed to be present in salivary glands. About 50 tick saliva proteins that are well described in the literature are discussed. These saliva components include enzymes, enzyme inhibitors, amine-binding proteins and cytokine homologues that act as anti-haemostatic, anti-inflammatory or immuno-modulatory agents. Sequence comparisons are illustrated. The importance of tick saliva and the significance of the findings to date are also discussed. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The southern cattle tick, Boophilus microplus (Canestrini), causes annual economic losses in the hundreds of millions of dollars to cattle producers throughout the world, and ranks as the most economically important tick from a global perspective. Control failures attributable to the development of pesticide resistance have become commonplace, and novel control technologies are needed. The availability of the genome sequence will facilitate the development of these new technologies, and we are proposing sequencing to a 4-6X draft coverage. Many existing biological resources are available to facilitate a genome sequencing project, including several inbred laboratory tick strains, a database of approximate to 45,000 expressed sequence tags compiled into a B. microplus Gene Index, a bacterial artificial chromosome (BAC) library, an established B. microplus cell line, and genomic DNA suitable for library synthesis. Collaborative projects are underway to map BACs and cDNAs to specific chromosomes and to sequence selected BAC clones. When completed, the genome sequences from the cow, B. microphis, and the B. microphis-borne pathogens Babesia bovis and Anaplasma marginale will enhance studies of host-vector-pathogen systems. Genes involved in the regeneration of amputated tick limbs and transitions through developmental stages are largely unknown. Studies of these and other interesting biological questions will be advanced by tick genome sequence data. Comparative genomics offers the prospect of new insight into many, perhaps all, aspects of the biology of ticks and the pathogens they transmit to farm animals and people. The B. microplus genome sequence will fill a major gap in comparative genomics: a sequence from the Metastriata lineage of ticks. The purpose of the article is to synergize interest in and provide rationales for sequencing the genome of B. microplus and for publicizing currently available genomic resources for this tick.
Resumo:
We explored patterns of infection of three apicomplexan blood parasites with different transmission mechanisms in 46 social groups across seven populations of the Australian lizard, Egernia stokesii. There was higher aggregation of infections within social groups for Hemolivia, transmitted by ticks, and Schellackia, either tick-transmitted or directly transmitted from mother to offspring, than for Plasmodium, with more mobile dipteran vectors. Prevalence was not related to group size, proximity to other groups or spatial overlap with adjacent groups for any of the parasites. However, for Hemolivia, groups with higher levels of relatedness among adults had higher parasite prevalence. Living in social groups leads to higher risk of infection for parasites with low transmission mobility. An unanswered question is why so few lizard species tolerate these risks to form stable social aggregations.
Resumo:
The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3–6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose.
Resumo:
Estresses ambientais abióticos são fatores que causam respostas ao nível molecular, fisiológico e morfológico em plantas, dependendo também de sua intensidade e duração. É visto que algumas espécies apresentam tolerância a condições estressantes e ao mesmo tempo são fontes naturais de matéria prima para indústria. Nesse contexto encontra-se a mamona (Ricinus comunnis L.), principal fonte de óleo de rícino valorizado por suas aplicações farmacêuticas e principalmente industriais, vem sendo usada como cultura em regiões onde a disponibilidade de água é reduzida, usada como fonte de renda para agricultura da região nordeste brasileira. Visto que pouco se sabe sobre as respostas moleculares que levam essa planta a tolerar regiões secas e como as sementes, principais foco de interesse, respondem a essa escassez, nesse trabalho foram construídas duas bibliotecas de cDNAs, onde a partir de uma abordagem subtrativa, continham RNAs diferencialmente expressos em sementes de plantas mamona submetidas ao estresse hídrico durante 5 dias (biblioteca L7), e a outra RNAs diferencialmente expressos em sementes controle (biblioteca L5). A biblioteca L7 apresentou a maior variedade de transcritos com um total de 182. A maior parte das funções estabelecidas pelo sistema Gene Ontology - GO, foram direcionadas aos “Processos Metabólicos” (526), em segundo “Respostas a estímulos” (57), o terceiro termo mais abundante foram referentes a “Desenvolvimento”(26). Já na biblioteca L5, foram encontrados 91 transcritos, com maior parte de suas funções referentes a “Processos Metabólicos”(413), em segundo “Respostas a estímulos” (8) e em terceiro Regulação (6). Alguns dos transcritos da biblioteca L7 foram escolhidos para análise por repetirem-se mais de 3x e não aparecerem na biblioteca L5, o que indica uma possível regulação positiva sobre estresse. As análises sobre Metalotioneína (4x), mostraram que a sequência de proteica apresentava os domínios conservados que a caracterizava como tipo II, onde são encontrados dois domínios funcionais ricos em cisteína com posições altamente conservadas, desempenhando a função de ligar-se a metais pesados, correlacionadas assim como a atividade de eliminação EROs e defesa contra o estresse oxidativo, além de apresentar homologia com a sequência de Bruguiera gymnorhiza, uma planta de mangue adaptada a ambientes salinos. Analisamos também os transcritos da referente a proteína AUXIN-REPRESSED 12.5 KDA (3x), apontada como sendo reprimida pelo hormônio auxina e associada ao processo de dormência da semente, é descrito em uma família gênica onde vários membros pertencem as vias de resposta ao estresse. Por último, analisamos a proteína GLUTELIN TYPE-A 3 (5x), uma importante proteína de armazenamento com caráter hidrofílico, possivelmente direcionada para o vacúolo. Em nosso trabalho foi possível observar um aumento de transcritos em relação a subtração controle, possivelmente reflexo do aumento do metabolismo da semente, tanto para resposta defensiva ao estresse hídrico quanto para o amadurecimento rápido da semente onde foram observados transcritos referentes a resposta oxidativa, controle hormonal, proteínas de reserva e produção de óleo.