967 resultados para Hyperbolic Boundary-Value Problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 44A40, 44A35

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 33D15, 33D90, 39A13

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 34A37.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Л. И. Каранджулов, Н. Д. Сиракова - В работата се прилага методът на Поанкаре за решаване на почти регулярни нелинейни гранични задачи при общи гранични условия. Предполага се, че диференциалната система съдържа сингулярна функция по отношение на малкия параметър. При определени условия се доказва асимптотичност на решението на поставената задача.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: Primary 65D30, 32A35, Secondary 41A55.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 34A08, 34A37, 49N70

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no agreement between experimental researchers whether the point where a granular material responds with a large change of stresses, strains or excess pore water pressure given a prescribed small input of some of the same variables defines a straight line or a curve in the stress space. This line, known as the instability line, may also vary in shape and position if the onset of instability is measured from drained or undrained triaxial tests. Failure of granular materials, which might be preceded by the onset of instability, is a subject that the geotechnical engineers have to deal with in the daily practice, and generally speaking it is associated to different phenomena observed not only in laboratory tests but also in the field. Examples of this are the liquefaction of loose sands subjected to undrained loading conditions and the diffuse instability under drained loading conditions. This research presents results of DEM simulations of undrained triaxial tests with the aim of studying the influence of stress history and relative density on the onset of instability in granular materials. Micro-mechanical analysis including the evolution of coordination numbers and fabric tensors is performed aiming to gain further insight on the particle-scale interactions that underlie the occurrence of this instability. In addition to provide a greater understanding, the results presented here may be useful as input for macro-scale constitutive models that enable the prediction of the onset of instability in boundary value problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant part of the life of a mechanical component occurs, the crack propagation stage in fatigue. Currently, it is had several mathematical models to describe the crack growth behavior. These models are classified into two categories in terms of stress range amplitude: constant and variable. In general, these propagation models are formulated as an initial value problem, and from this, the evolution curve of the crack is obtained by applying a numerical method. This dissertation presented the application of the methodology "Fast Bounds Crack" for the establishment of upper and lower bounds functions for model evolution of crack size. The performance of this methodology was evaluated by the relative deviation and computational times, in relation to approximate numerical solutions obtained by the Runge-Kutta method of 4th explicit order (RK4). Has been reached a maximum relative deviation of 5.92% and the computational time was, for examples solved, 130,000 times more higher than achieved by the method RK4. Was performed yet an Engineering application in order to obtain an approximate numerical solution, from the arithmetic mean of the upper and lower bounds obtained in the methodology applied in this work, when you don’t know the law of evolution. The maximum relative error found in this application was 2.08% which proves the efficiency of the methodology "Fast Bounds Crack".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the evolution of a bistable reaction in a one-dimensional stretching flow, as a model for chaotic advection. We derive two reduced systems of ordinary differential equations (ODEs) for the dynamics of the governing advection-reaction-diffusion partial differential equations (PDE), for pulse-like and for plateau-like solutions, based on a non-perturbative approach. This reduction allows us to study the dynamics in two cases: first, close to a saddle-node bifurcation at which a pair of nontrivial steady states are born as the dimensionless reaction rate (Damkoehler number) is increased, and, second, for large Damkoehler number, far away from the bifurcation. The main aim is to investigate the initial-value problem and to determine when an initial condition subject to chaotic stirring will decay to zero and when it will give rise to a nonzero final state. Comparisons with full PDE simulations show that the reduced pulse model accurately predicts the threshold amplitude for a pulse initial condition to give rise to a nontrivial final steady state, and that the reduced plateau model gives an accurate picture of the dynamics of the system at large Damkoehler number. Published in Physica D (2006)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"These studies were conducted by the General Electric Company, Reentry Systems Department, for the Stability and Control Section of the Flight Dynamics Laboratory of the Air Force Research and Technology Division."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este proyecto de investigación construye y evalúa la asignación de activos para el portafolio de Pensión Obligatoria de Retiro Programado, el cual atiende los retiros a los que un pensionado tiene derecho a través de su mesada pensional, utilizando el modelo de Frontera Eficiente de Markowitz, en combinación con la teoría de Momentum -- Para la ejecución del modelo se determinaron los activos de inversión admisibles en el Régimen de Inversiones -- Posteriormente, se construyen las matrices de rentabilidades, de restricciones, de varianzas y covarianzas, las cuales constituyen los insumos para ejecutar el modelo de optimización de portafolios de Markowitz -- A continuación, se realiza la selección de los portafolios obtenidos, teniendo en cuenta el nivel de volatilidad que el portafolio de Obligatorias Retiro Programado debe presentar; lo anterior, con el fin de cumplir con el objetivo de preservación del capital en la cuenta individual del pensionado, de manera que se pueda atender, de acuerdo a su esperanza de vida y la de sus beneficiarios, el pago de las mesadas pensionales que le correspondan -- El resultado obtenido corresponde a una asignación, en gran parte, en activos de Renta Fija expedidos por el Gobierno Nacional (TES), tanto en tasa fija como en tasa indexada a la UVR -- Adicionalmente, el modelo de optimización sugiere participaciones en activos de renta variable y, particularmente, no asigna recursos representativos en títulos de deuda privada indexados al IPC -- Esta investigación puede ser útil al momento de diseñar un portafolio base para Obligatorias Retiro Programado que, bajo una administración pasiva, permita cumplir el objetivo de otorgar a los pensionados una mesada para satisfacer las necesidades básicas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop the energy norm a-posteriori error estimation for hp-version discontinuous Galerkin (DG) discretizations of elliptic boundary-value problems on 1-irregularly, isotropically refined affine hexahedral meshes in three dimensions. We derive a reliable and efficient indicator for the errors measured in terms of the natural energy norm. The ratio of the efficiency and reliability constants is independent of the local mesh sizes and weakly depending on the polynomial degrees. In our analysis we make use of an hp-version averaging operator in three dimensions, which we explicitly construct and analyze. We use our error indicator in an hp-adaptive refinement algorithm and illustrate its practical performance in a series of numerical examples. Our numerical results indicate that exponential rates of convergence are achieved for problems with smooth solutions, as well as for problems with isotropic corner singularities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel finite element formulation that significantly reduces the number of degrees of freedom necessary to obtain reasonably accurate approximations of the low-frequency component of the deformation in boundary-value problems. In contrast to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie algebra—the logarithmic space—of the deformation function. We construct a deformation function based on an interpolation of transformations at the nodes of the finite element. In the case of the geometrically exact planar Bernoulli beam element presented in this work, these transformation functions at the nodes are given as rotations. However, due to an intrinsic coupling between rotational and translational components of the deformation function, the formulation provides for a good approximation of the deflection of the beam, as well as of the resultant forces and moments. As both the translational and the rotational components of the deformation function are defined on the logarithmic space, we propose to refer to the novel approach as the “Logarithmic finite element method”, or “LogFE” method.