936 resultados para Higher-order functions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An overwhelming problem in Math Curriculums in Higher Education Institutions (HEI), we are daily facing in the last decade, is the substantial differences in Math background of our students. When you try to transmit, engage and teach subjects/contents that your “audience” is unable to respond to and/or even understand what we are trying to convey, it is somehow frustrating. In this sense, the Math projects and other didactic strategies, developed through Learning Management System Moodle, which include an array of activities that combine higher order thinking skills with math subjects and technology, for students of HE, appear as remedial but important, proactive and innovative measures in order to face and try to overcome these considerable problems. In this paper we will present some of these strategies, developed in some organic units of the Polytechnic Institute of Porto (IPP). But, how “fruitful” are the endless number of hours teachers spent in developing and implementing these platforms? Do students react to them as we would expect? Do they embrace this opportunity to overcome their difficulties? How do they use/interact individually with LMS platforms? Can this environment that provides the teacher with many interesting tools to improve the teaching – learning process, encourages students to reinforce their abilities and knowledge? In what way do they use each available material – videos, interactive tasks, texts, among others? What is the best way to assess student’s performance in these online learning environments? Learning Analytics tools provides us a huge amount of data, but how can we extract “good” and helpful information from them? These and many other questions still remain unanswered but we look forward to get some help in, at least, “get some drafts” for them because we feel that this “learning analysis”, that tackles the path from the objectives to the actual results, is perhaps the only way we have to move forward in the “best” learning and teaching direction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linear logic has long been heralded for its potential of providing a logical basis for concurrency. While over the years many research attempts were made in this regard, a Curry-Howard correspondence between linear logic and concurrent computation was only found recently, bridging the proof theory of linear logic and session-typed process calculus. Building upon this work, we have developed a theory of intuitionistic linear logic as a logical foundation for session-based concurrent computation, exploring several concurrency related phenomena such as value-dependent session types and polymorphic sessions within our logical framework in an arguably clean and elegant way, establishing with relative ease strong typing guarantees due to the logical basis, which ensure the fundamental properties of type preservation and global progress, entailing the absence of deadlocks in communication. We develop a general purpose concurrent programming language based on the logical interpretation, combining functional programming with a concurrent, session-based process layer through the form of a contextual monad, preserving our strong typing guarantees of type preservation and deadlock-freedom in the presence of general recursion and higher-order process communication. We introduce a notion of linear logical relations for session typed concurrent processes, developing an arguably uniform technique for reasoning about sophisticated properties of session-based concurrent computation such as termination or equivalence based on our logical approach, further supporting our goal of establishing intuitionistic linear logic as a logical foundation for sessionbased concurrency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA may fold into a diversity of structures and topologies such as duplexes and triplexes. Some specific guanine-rich DNA sequences may even fold into a higher order structures denominated guanine G-quadruplexes (G4). These G-quadruplex forming sequences have shown biological interest since were found in telomeres and in promoter region of oncogenes. Thus, these G4 forming sequences have been explored as therapeutic targets for cancer therapy, since G4 formation was demonstrated to inhibit RNA-polymerase and telomerase activity. However, the G4 structures are transient and are only formed under specific conditions. Hence the main objective of this work is to develop new G4-specific ligands which may potentially find applications in the therapeutic area. Several potential G4-binding ligands were synthesized and characterized. The synthesis of these compounds consisted on a procedure based on van Leusen chemistry and a cross-coupling reaction through C-H activation, affording phenanthroline compounds (Phen-1, 50%; Phen-2, 20%), phenyl (Iso-1, 61%; Iso-2, 21%; Ter-1, 85%; Ter-2, 35%), and quinolyl (Quin-1, 85%; Quin-2, 45%) compounds. Screening assays for selecting the potential G4 compounds were performed by FRET-melting, G4-FID, CD-melting and DSF. Qualitative biophysical studies were performed by fluorescence and CD spectroscopy. Two high-specific G-quadruplex ligands, Phen-1 and Phen-2, were found to effectively bind telomeric and c-myc G4 structures. Phen-1 was found to stabilize parallel telomeric 22AG and c-myc sequence by 4.1 and 4.3 ˚C, respectively. Phen-2 also displayed high affinity towards 22AG (

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To evaluate changes in anterior corneal topography and higher-order aberrations (HOA) after 14-days of rigid gas-permeable (RGP) contact lens (CL) wear in keratoconus subjects comparing two different fitting approaches. Methods: Thirty-one keratoconus subjects (50 eyes) without previous history of CL wear were recruited for the study. Subjects were randomly fitted to either an apical-touch or three-pointtouch fitting approach. The lens’ back optic zone radius (BOZR) was 0.4 mm and 0.1 mm flatter than the first definite apical clearance lens, respectively. Differences between the baseline and post-CL wear for steepest, flattest and average corneal power (ACP) readings, central corneal astigmatism (CCA), maximum tangential curvature (KTag), anterior corneal surface asphericity, anterior corneal surface HOA and thinnest corneal thickness measured with Pentacam were compared. Results: A statistically significant flattening was found over time on the flattest and steepest simulated keratometry and ACP in apical-touch group (all p < 0.01). A statistically significant reduction in KTag was found in both groups after contact lens wear (all p < 0.05). Significant reduction was found over time in CCA (p = 0.001) and anterior corneal asphericity in both groups (p < 0.001). Thickness at the thinnest corneal point increased significantly after CL wear (p < 0.0001). Coma-like and total HOA root mean square (RMS) error were significantly reduced following CL wearing in both fitting approaches (all p < 0.05). Conclusion: Short-term rigid gas-permeable CL wear flattens the anterior cornea, increases the thinnest corneal thickness and reduces anterior surface HOA in keratoconus subjects. Apicaltouch was associated with greater corneal flattening in comparison to three-point-touch lens wear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Abnormalities in emotional prosody processing have been consistently reported in schizophrenia and are related to poor social outcomes. However, the role of stimulus complexity in abnormal emotional prosody processing is still unclear. Method: We recorded event-related potentials in 16 patients with chronic schizophrenia and 16 healthy controls to investigate: 1) the temporal course of emotional prosody processing; and 2) the relative contribution of prosodic and semantic cues in emotional prosody processing. Stimuli were prosodic single words presented in two conditions: with intelligible (semantic content condition—SCC) and unintelligible semantic content (pure prosody condition—PPC). Results: Relative to healthy controls, schizophrenia patients showed reduced P50 for happy PPC words, and reduced N100 for both neutral and emotional SCC words and for neutral PPC stimuli. Also, increased P200 was observed in schizophrenia for happy prosody in SCC only. Behavioral results revealed higher error rates in schizophrenia for angry prosody in SCC and for happy prosody in PPC. Conclusions: Together, these data further demonstrate the interactions between abnormal sensory processes and higher-order processes in bringing about emotional prosody processing dysfunction in schizophrenia. They further suggest that impaired emotional prosody processing is dependent on stimulus complexity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ajjanahalli gold mine is spatially associated with a Late Archean craton-scale shear zone in the eastern Chitradurga greenstone belt of the Dharwar craton, India. Gold mineralization is hosted by an similar to100-m-wide antiform in a banded iron formation. Original magnetite and siderite are replaced by a peak metamorphic alteration assemblage of chlorite, stilpnomelane, minnesotaite, sericite, ankerite, arsenopyrite, pyrite, pyrrhotite, and gold at ca. 300degrees to 350degreesC. Elements enriched in the banded iron formation include Ca, Mg, C, S, An, As, Bi. Cu, Sb, Zn, Pb, Se, Ag, and Te, whereas in the wall rocks As, Cu, Zn, Bi, Ag, and An are only slightly enriched. Strontium correlates with CaO, MgO, CO2, and As, which indicates cogenetic formation of arsenopyrite and Mg-Ca carbonates. The greater extent of alteration in the Fe-rich banded iron formation layers than in the wall rock reflects the greater reactivity of the banded iron formation layers. The ore fluids, as interpreted from their isotopic composition (delta(18)O = 6.5-8.5parts per thousand; initial Sr-87/Sr-86 = 0.7068-0.7078), formed by metamorphic devolatilization of deeper levels of the Chitradurga greenstone belt. Arsenopyrite, chalcopyrite, and pyrrhotite have delta(34)S values within a narrow range between 2.1 and 2.7 per mil, consistent with a sulfur source in Chitradurga greenstone belt lithologies. Based on spatial and temporal relationships between mineralization, local structure development, and sinistral strike-slip deformation in the shear zone at the eastern contact of the Chitradurga greenstone belt, we suggest that the Ajjanahalli gold mineralization formed by fluid infiltration into a low strain area within the first-order structure. The ore fluids were transported along this shear zone into relatively shallow crustal levels during lateral terrane accretion and a change from thrust to transcurrent tectonics. Based on this model of fluid flow, exploration should focus on similar low strain areas or potentially connected higher order splays of the first-order shear zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multisensory interactions are a fundamental feature of brain organization. Principles governing multisensory processing have been established by varying stimulus location, timing and efficacy independently. Determining whether and how such principles operate when stimuli vary dynamically in their perceived distance (as when looming/receding) provides an assay for synergy among the above principles and also means for linking multisensory interactions between rudimentary stimuli with higher-order signals used for communication and motor planning. Human participants indicated movement of looming or receding versus static stimuli that were visual, auditory, or multisensory combinations while 160-channel EEG was recorded. Multivariate EEG analyses and distributed source estimations were performed. Nonlinear interactions between looming signals were observed at early poststimulus latencies (∼75 ms) in analyses of voltage waveforms, global field power, and source estimations. These looming-specific interactions positively correlated with reaction time facilitation, providing direct links between neural and performance metrics of multisensory integration. Statistical analyses of source estimations identified looming-specific interactions within the right claustrum/insula extending inferiorly into the amygdala and also within the bilateral cuneus extending into the inferior and lateral occipital cortices. Multisensory effects common to all conditions, regardless of perceived distance and congruity, followed (∼115 ms) and manifested as faster transition between temporally stable brain networks (vs summed responses to unisensory conditions). We demonstrate the early-latency, synergistic interplay between existing principles of multisensory interactions. Such findings change the manner in which to model multisensory interactions at neural and behavioral/perceptual levels. We also provide neurophysiologic backing for the notion that looming signals receive preferential treatment during perception.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given a sample from a fully specified parametric model, let Zn be a given finite-dimensional statistic - for example, an initial estimator or a set of sample moments. We propose to (re-)estimate the parameters of the model by maximizing the likelihood of Zn. We call this the maximum indirect likelihood (MIL) estimator. We also propose a computationally tractable Bayesian version of the estimator which we refer to as a Bayesian Indirect Likelihood (BIL) estimator. In most cases, the density of the statistic will be of unknown form, and we develop simulated versions of the MIL and BIL estimators. We show that the indirect likelihood estimators are consistent and asymptotically normally distributed, with the same asymptotic variance as that of the corresponding efficient two-step GMM estimator based on the same statistic. However, our likelihood-based estimators, by taking into account the full finite-sample distribution of the statistic, are higher order efficient relative to GMM-type estimators. Furthermore, in many cases they enjoy a bias reduction property similar to that of the indirect inference estimator. Monte Carlo results for a number of applications including dynamic and nonlinear panel data models, a structural auction model and two DSGE models show that the proposed estimators indeed have attractive finite sample properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-field (>or=3 T) cardiac MRI is challenged by inhomogeneities of both the static magnetic field (B(0)) and the transmit radiofrequency field (B(1)+). The inhomogeneous B fields not only demand improved shimming methods but also impede the correct determination of the zero-order terms, i.e., the local resonance frequency f(0) and the radiofrequency power to generate the intended local B(1)+ field. In this work, dual echo time B(0)-map and dual flip angle B(1)+-map acquisition methods are combined to acquire multislice B(0)- and B(1)+-maps simultaneously covering the entire heart in a single breath hold of 18 heartbeats. A previously proposed excitation pulse shape dependent slice profile correction is tested and applied to reduce systematic errors of the multislice B(1)+-map. Localized higher-order shim correction values including the zero-order terms for frequency f(0) and radiofrequency power can be determined based on the acquired B(0)- and B(1)+-maps. This method has been tested in 7 healthy adult human subjects at 3 T and improved the B(0) field homogeneity (standard deviation) from 60 Hz to 35 Hz and the average B(1)+ field from 77% to 100% of the desired B(1)+ field when compared to more commonly used preparation methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Neuroimaging studies show cerebellar activations in a wide range of cognitive tasks and patients with cerebellar lesions often present cognitive deficits suggesting a cerebellar role in higher-order cognition. OBJECTIVE: We used cathodal transcranial direct current stimulation (tDCS), known to inhibit neuronal excitability, over the cerebellum to investigate if cathodal tDCS impairs verbal working memory, an important higher-order cognitive faculty. METHOD: We tested verbal working memory as measured by forward and backward digit spans in 40 healthy young participants before and after applying cathodal tDCS (2 mA, stimulation duration 25 min) to the right cerebellum using a randomized, sham-controlled, double-blind, cross-over design. In addition, we tested the effect of cerebellar tDCS on word reading, finger tapping and a visually cued sensorimotor task. RESULTS: In line with lower digit spans in patients with cerebellar lesions, cerebellar tDCS reduced forward digit spans and blocked the practice dependent increase in backward digit spans. No effects of tDCS on word reading, finger tapping or the visually cued sensorimotor task were found. CONCLUSION: Our results support the view that the cerebellum contributes to verbal working memory as measured by forward and backward digit spans. Moreover, the induction of reversible "virtual cerebellar lesions" in healthy individuals by means of tDCS may improve our understanding of the mechanistic basis of verbal working memory deficits in patients with cerebellar lesions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to analyze the replicability of Zuckerman's revised Alternative Five-factor model in a French-speaking context by validating the Zuckerman-Kuhlman-Aluja Personality Questionnaire (ZKA-PQ) simultaneously in 4 French-speaking countries. The total sample was made up of 1,497 subjects from Belgium, Canada, France, and Switzerland. The internal consistencies for all countries were generally similar to those found for the normative U.S. and Spanish samples. A factor analysis confirmed that the normative structure replicated well and was stable within this French-speaking context. Moreover, multigroup confirmatory factor analyses have shown that the ZKA-PQ reaches scalar invariance across these 4 countries. Mean scores were slightly different for women and men, with women scoring higher on Neuroticism but lower on Sensation Seeking. Globally, mean score differences across countries were small. Overall, the ZKA-PQ seems an interesting alternative to assess both lower and higher order personality traits for applied or research purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a previous paper [J.Fort and V.Méndez, Phys. Rev. Lett. 82, 867 (1999)], the possible importance of higher-order terms in a human population wave of advance has been studied. However, only a few such terms were considered. Here we develop a theory including all higher-order terms. Results are in good agreement with the experimental evidence involving the expansion of agriculture in Europe