861 resultados para High performance concrete
Resumo:
Paeoniflorin standard was first investigated by electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) using a sustained off-resonance irradiation (SORI) collision-induced dissociation (CID) method at high mass resolution. The experimental results demonstrated that the unambiguous elemental composition of product ions can be obtained at high mass resolution. Comparing MS/MS spectra and the experimental methods of hydrogen and deuterium exchange, the logical fragmentation pathways of paeoniflorin have been proposed. Then, the extracts of the traditional Chinese medicine Paeonia lactiflora Pall. were analyzed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). By comparison with the ESI-FTICR-MS/MS data of paeoniflorin, the isomers paeoniflorin and albiflorin in Paeonia lactiflora Pall. have been identified using HPLC/MS with CID in an ion trap and in-source CID. Furthermore, using the characteristic fragmentation pathways, the retention times (t(R)) in HPLC and MS/MS spectra, the structures of three other kinds of monoterpene glycoside compounds have been identified on-line without time-consuming isolation.
Resumo:
A reversed-phase high-performance liquid chromatography-diode array detector-electrospray ionization multiple-stage tandem mass spectrometry (RP-HPLC-DAD-ESl-MSn) method has been developed for the detection and analysis of lignan constituents in the methanol extract from the fruits of Schisandra chinensis (Turcz.) Baill. RP-HPLC-DAD-ESI-MSn and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-TCR-MSn) have been applied to investigate the characteristic product ions of four lignan reference compounds. Then, the logical fragmentation pathways of the lignans have been proposed. By comparing the retention time (t(R)) of HPLC, the ESI-MSn data and the structures of analyzed compounds with the data of reference compounds and in the literature, 11 peaks in HPLC have been unambiguously identified and another 5 peaks have been tentatively identified or deduced. Also, in the present paper, the extracted ion chromatograms (EIC) have been used to analyze the lignan isomers. The experimental results demonstrate that RP-HPLC-DAD-ESI-MSn is a specific and useful method for the identification of the lignan constituents and their isomers.
Resumo:
A high performance liquid chroatography-electrospray ionization-mass spectrometric method was developed for analysis and identification of ginsenosides from the decoction of ginseng, ginseng with trogopteroum feces and ginseng with semen raphani. Ten ginsenosides were separated and detected. The content variation of these ginsenosides was researched. The experimental results showed, that ginsenosides were less in compatible decoction than in separate one expect Ro. the stripping of ginsenosides were restrained by semen raphani and during combination of ginseng with trogopteroum feces, the precipitates were produced by ginsenosides.
Resumo:
Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.
Resumo:
Separation of scandium(III), yttrium(III) and lanthanum(III) was performed by high-performance centrifugal partition chromatography (HPCPC) employing the stationary phase of S-octyl phenyloxy acetic acid (CA-12). The liquid-liquid extraction behavior of CA-12 for Sc(III), Y(III) and La(III), the acidity of aqueous phase, and the operation conditions of HPCPC were examined. The retention volume (V-R) increased with the order of Y(III), La(III) and Sc(III) accompanied with the elution of the mobile phase in different pH, which is lowered from 4.6 to 2.1.
Resumo:
The effect of PMR-polyimide(POI) as the interfacial agent on the interface characteristics, morphology features and crystallization of poly (ether sulfone) /poly (phenylene sulfide) (PES/PPS) and poly(ether ether ketone)/poly (ether sulfone) (PEEK/PES) partly miscible blends were investigated by means of the scanning electron microscopy, WAXD and XPS surface analysis. It is found that the interfacial adhesion was enhanced remarkably, the size of the dispersed phase particles was reduced significantly and the miscibility was improved by the addition of POI. During melt blending cross-link and/or grafting reaction of POI with PES, PEEK and PPS homopolymers was detected, however the reaction activity of POI with PPS was much higher than that of PES and PEEK. It was also found that POI was an effective nucleation agent of the crystallization of PPS.
Resumo:
Three cellulose derivatives were synthesized and used as chiral stationary phases based on silica gel. The effects of adsorbances on the column numbers and stabilities have been investigated. These stationary phases exhibited high chiral recognition for various racemates. At the same time, the on-line curves of polarimeter were obtained by high performance liquid chromatography with polarimeter as on-line detector.
Resumo:
Electrochemical detection of five species of aromatic amines at a carbon fiber microdisk electrode after separation by capillary electrophoresis is described. Under the optimum conditions, the detection limit for 3,4-dihydroxybenzylamine, N,N-dimethylaniline, p-phenylenediamine, p-aminophenol and aniline sulfate was 0.9, 0.03, 0.075, 1.2 and 0.15 mu M (S/N = 3), respectively. The linear response range was 5-1000, 0.1-500, 0.5-500, 5-500 and 1-200 mu M, respectively The effect of the electrode position and buffer pH on the detection was also studied. This method is very simple, sensitive and stable for the detection of these compounds.
Resumo:
An organo-soluble polyimide based on 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and 2,2'dimethyl-4,4'-methylene dianiline (DMMDA), was synthesized via two-step polycondensation accompanied by chemical imidization. Five fractions were prepared by fractionation. The dilute solutions of the fractions were studied by LLS (Laser Light Scattering) and the intrinsic viscosities of the fractions were measured. The unperturbed dimension was determined by the intrinsic viscosity with the Stockmayer-Fox equation. The results indicate that the polyimide in this study has a flexible chain conformation in chloroform and N,N-dimethyl acetamide (DMAc). However, the degree of chain expansion differs in different solvents. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
An organo-soluble polyimide based on 4,4'-(1,4-phenylenedioxy)diphthalic anhydride and 2,2'-dimethyl-4,4'-methylenedianiline was synthesized by two-step polycondensation accompanied by chemical imidization. Polyimide films were prepared by spray casting onto glass substrates. The study focused on the separation of carbon dioxide (CO2) from natural gas and the enrichment of methane (CH4) from butane (C4H18). The permeability and permselectivity coefficients of these gases were determined.
Resumo:
A series of macrocyclic arylate dimers have been efficiently synthesized by an interfacial polycondensation of o-phthaloyl dichloride with bisphenols. A combination of GPC, FAB MS, and H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of one such macrocycle reveals no severe strain on the cyclic structure, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
A reversed-phase high-performance liquid chromatography with series dual glassy carbon electrodes for the amperometric detection of water-soluble menadione is described. The complex post-column derivatization reaction and the high background currents were avoided. The menadione sodium bisulfite was reduced at -0.3 V vs. SCE at the upstream (generator) electrode and oxidized at +0.2V vs. SCE at the downstream (collector) electrode. The mobile phase was 0.2moll(-1) HAc-NaAc aqueous buffer (pH 5.50) and 40% (v/v) methanol. The linear response was in the range of 35 ng to 15 mu g, with a detection Limit of 15 ng (S/N=3). The correlation coefficient was 0.9997 (n=6). The electrochemical detection with series dual electrodes has a higher selectivity for menadione (vitamin K-3) compound than with UV detection.
Resumo:
Two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), in CHCl3 at 25 degrees C have been studied using laser light scattering. We found that the z-average radius of gyration ([R(g)]) can be scaled to the weight-average molecular weight (M(w)) as [R(g)] (nm) = 4.95 x 10(-2)M(w)(0.52) and [R(g)] (nm) = 1.25 x 10(-2)M(w)(0.66) respectively for poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), indicating that poly(ODPA/DMMDA) in CHCl3 at 25 degrees C has a more extended chain conformation than poly(BCPOBDA/DMMDA). Using the wormlike chain model approach, we found that the Flory characteristic ratios (C*) of poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA) are similar to 20 and similar to 31, respectively, indicating that both of them have a slightly extended chain conformation in comparison with typical flexible polymer chains, such as polystyrene, whose C-infinity is similar to 10. A combination of the weight-average molar mass (M(w)) with the translational diffusion coefficient distributions (G(D)) has led to D (cm(2)/s) = 3.53 x 10(-4)M(-0.579) and D (cm(2)/s) = 4.30 x 10(-4)M(-0.613) respectively for two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMTA), in CHCl3 at 25 degrees C. Using these two calibrations, we have successfully characterized the molar mass distributions of the two polyimides from their corresponding G(D)s. The exponents of these two calibrations further confirm that both of the polyimides have a slightly extended coil chain conformation in CHCl3. The chain flexibility difference between these two polyimides has also been discussed.
Resumo:
A reversed-phase high-performance liquid chromatographic method with amperometric detection is described for the separation and quantification of uric acid, guanine, hypoxanthine and xanthine. The isocratic separation of a standard mixture of the compounds was achieved in 5 min on a Spherisorb 5 C-18 reversed-phase column, with a mobile phase of NaH2PO4 (300 mmol dm(-3) pH 3.0)-methanol-acetonitrile-tetrahydrofuran (97.8 + 0.5 + 1.5 + 0.2). Uric acid, guanine, hypoxanthine and xanthine were completely separated, with detection limits in the range 2-20 pmol per injection. The effect of pH and the composition of the mobile phase on the separation are described. The hydrodynamic voltammograms of these compounds were recorded at a glassy carbon electrode. The linear range of the calibration graph for each compound was: uric acid; 1-5000 mu mol dm(-3); guanine, 0.5-2000 mu mol dm(-3); hypoxanthine, 0.1-500 mu mol dm(-3) and xanthine, 0.5-5000 mu mol dm(-3). The within- and between-day precision was good. The uric acid and hypoxanthine content in human plasma was measured using the proposed method. Good recoveries of uric acid (97.9-103%), hypoxanthine (98.0-99.2%), guanine (96.0-98.3%) and xanthine (96.0-102%) were obtained from human plasma. The results of electrochemical detection were in good agreement with those of UV detection.
Resumo:
The developments of physical aging in phenolphthalein poly(aryl-ether-ketone) (PEK-C) and poly(aryl-ether-sulfone) (PES-C) with time at two aging temperatures up to 20 K below their respective glass transition temperatures (T-g = 495 and 520 K) have been studied using differential scanning calorimetry (DSC). Substantial relaxation within the aging course of several hours were observed by detecting T-g decreasing during physical aging process at the two aging temperatures. The relaxation processes of both polymers are extremely nonlinear and self-retarding. The time dependencies of their enthalpies during the initial stages of annealing were approximately modeled using the Narayanaswamy-Tool model. The structure relaxation parameters obtained from this fitting were used to predict the possibility of physical aging occurring at their respective using temperatures. (C) 1995 John Wiley and Sons, Inc.