971 resultados para Heisenberg XXZ Model, Quantum Phase Transitions, Kibble-Zurek mechanism, DMRG
Resumo:
We consider bipartitions of one-dimensional extended systems whose probability distribution functions describe stationary states of stochastic models. We define estimators of the information shared between the two subsystems. If the correlation length is finite, the estimators stay finite for large system sizes. If the correlation length diverges, so do the estimators. The definition of the estimators is inspired by information theory. We look at several models and compare the behaviors of the estimators in the finite-size scaling limit. Analytical and numerical methods as well as Monte Carlo simulations are used. We show how the finite-size scaling functions change for various phase transitions, including the case where one has conformal invariance.
Resumo:
The temperature dependence of the crystalline structure and the lattice parameters of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric ceramic system with 0.00 x 0.21 was determined. The samples with x 0.11 show a cubic-to-tetragonal phase transition at the maximum dielectric permittivity, Tmax. Above this amount and especially for the x = 0.12 sample, a spontaneous phase transition from a relaxor ferroelectric state (cubic phase) to a ferroelectric state (tetragonal phase) is observed upon cooling below the Tmax. Unlike what has been reported in other studies, the x = 0.13, 0.14, and 0.15 samples, which present a more pronounced relaxor behavior, also presents a spontaneous normal-to-relaxor transition, indicated by a cubic to tetragonal symmetry below the Tmax. The origin of this anomaly has been associated with an increase in the degree of tetragonality, confirmed by the measurements of the X-ray diffraction patterns. The differential thermal analysis (DSC) measurements also confirm the existence of these phase transitions.
Resumo:
We propose a method to compute the entanglement degree E of bipartite systems having dimension 2 x 2 and demonstrate that the partial transposition of density matrix, the Peres criterion, arise as a consequence Of Our method. Differently from other existing measures of entanglement, the one presented here makes possible the derivation of a criterion to verify if an arbitrary bipartite entanglement will suffers sudden death (SD) based only on the initial-state parameters. Our method also makes possible to characterize the SD as a dynamical quantum phase transition, with order parameter epsilon. having a universal critical exponent -1/2. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Thin Cd(2)Nb(2)O(7) films were grown on single-crystal p-type SiO(2)/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO(2)/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Perovskite-structured Ba(0.90)Ca(0.10)(Ti(1-x)Zr(x))O(3) ceramics were prepared in this work and subsequently studied in terms of composition-dependent dielectric and high-resolution long-range order structural properties from 30 to 450 K. The dielectric response of these materials was measured at several frequencies in the range from 1 kHz to 1 MHz. Combining both techniques, including Rietveld refinement of the X-ray diffraction data, allowed observing that, when increasing Zr(4+) content, the materials change from conventional to diffuse and relaxor ferroelectric compounds, the transition occurring spontaneously at the x = 0.18 composition. Interestingly, this spontaneous transition turned out to be prevented for a further increase of Zr(4+). On the basis of all the dielectric and structural results processed, a phase diagram of this system is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We introduce jump processes in R(k), called density-profile processes, to model biological signaling networks. Our modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. We are mostly interested on the multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation with explicit bounds on the distance between the stochastic and deterministic trajectories. As parameters of the spin-flip dynamics change, the associated dynamical system may go through bifurcations, associated to phase transitions in the statistical mechanical setting. We present a simple example of spin-flip stochastic model, associated to a synthetic biology model known as repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. Depending on the parameter values, the magnetization random path can either converge to a unique stable fixed point, converge to one of a pair of stable fixed points, or asymptotically evolve close to a deterministic orbit in Rk. We also discuss a simple signaling pathway related to cancer research, called p53 module.
Resumo:
We synthesize and characterize alkylthiohydroquinones (ATHs) in order to investigate their interactions with lipid model membranes, POPE and POPC. We observe the formation of structures with different morphologies, or curvature of the lipid bilayer, depending on pH and increasing temperature. We attribute their formation to changes in the balance charge/polarity induced by the ATHs. Mixtures of ATHs with POPE at pH 4 form two cubic phases, P4(3)32 and Im3m, that reach a maximum lattice size at 40 degrees C while under basic conditions these phases only expand upon heating from room temperature. The cubic phases coexist with lamellar or hexagonal phases and are associated with inhomogeneous distribution of the ATH molecules over the lipid matrix. The zwitterionic POPC does not form cubic phases but instead shows lamellar structures with no clear influence of the 2,6-BATH.
Resumo:
In this work we study the phase transitions of the ferromagnetic three-color Ashkin-Teller Model in the hierarquical lattice generated by the Wheatstone bridge using real space renormalization group approach. With such technique we obtain the phase diagram and its critical points with respective critical exponents v. This model presents four phases: ferromagnetic, paramagnetic and two intermediates. Nine critical points were found, three of which are of Ising model type, three are of four states Potts model type, one is of eight states Potts model type and the last two which do not correspond to any Potts model with integer number of states. iv
Resumo:
The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work
Resumo:
In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified
Resumo:
This article shows a transmission line model for simulation of fast and slow transients, applied to symmetrical or asymmetrical configurations. A transmission line model is developed based on lumped elements representation and state-space techniques. The proposed methodology represents a practical procedure to model three-phase transmission lines directly in time domain, without the explicit or implicit use of inverse transforms. In three-phase representation, analysis modal techniques are applied to decouple the phases in their respective propagation modes, using a correction procedure to set a real and constant matrix for untransposed lines with or without vertical symmetry plane. The proposed methodology takes into account the frequency-dependent parameters of the line and in order to include this effect in the state matrices, a fitting procedure is applied. To verify the accuracy of the proposed state-space model in frequency domain, a simple methodology is described based on line distributed parameters and transfer function associated with input/output signals of the lumped parameters representation. In addition, this article proposes the use of a fast and robust integration procedure to solve the state equations, enabling transient and steady-state simulations. The results obtained by the proposed methodology are compared with several established transmission line models in EMTP, taking into account an asymmetrical three-phase transmission line. The principal contribution of the proposed methodology is to handle a steady fundamental signal mixed with fast and slow transients, including impulsive and oscillatory behavior, by a practical procedure applied directly in time domain for symmetrical or asymmetrical representations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We consider the modification of the Cahn-Hilliard equation when a time delay process through a memory function is taken into account. We then study the process of spinodal decomposition in fast phase transitions associated with a conserved order parameter. Finite-time memory effects are seen to affect the dynamics of phase transition at short times and have the effect of delaying, in a significant way, the process of rapid growth of the order parameter that follows a quench into the spinodal region. These effects are important in several systems characterized by fast processes, like non-equilibrium dynamics in the early universe and in relativistic heavy-ion collisions. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In recent years, an approach to discrete quantum phase spaces which comprehends all the main quasiprobability distributions known has been developed. It is the research that started with the pioneering work of Galetti and Piza, where the idea of operator bases constructed of discrete Fourier transforms of unitary displacement operators was first introduced. Subsequently, the discrete coherent states were introduced, and finally, the s-parametrized distributions, that include the Wigner, Husimi, and Glauber-Sudarshan distribution functions as particular cases. In the present work, we adapt its formulation to encompass some additional discrete symmetries, achieving an elegant yet physically sound formalism.
Resumo:
In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions, is responsible for the leading corrections to scaling due to its small scaling dimension.