1000 resultados para Healthcare Channel
Resumo:
We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.
Resumo:
The channel volatiles in cordierites of the Precambrian high-grade metapelites from southern and eastern Karnataka northern Tamil Nadu and southern Kerala were analyzed in an attempt to use them as metamorphic fluid fugacity indicators. Infrared powder absorption spectra, used to characterize the channel volatiles, showed that all the 21 analyzed cordierites have H2O and CO2 as the channel volatiles, indicating the predominantly H2O-CO2 composition of the metamorphic fluids. The H2O fraction in the metamorphic fluid was computed using a published thermodynamic method in conjunction with gravimetrically determined cordierite channel H2O content, available P - T estimates and an appropriate equation of state for the H2O - CO2 fluids. The IR data and these calculated X(H2O) values indicate an overall correlation between the variation in the relative proportion of H2O and CO2 in the fluids and the metamorphic grade. The average computed X(H2O) values are: 0.78 for the amphibolite facies eastern Karnataka pelites, 0.36 for the amphibolite facies southern Karnataka pelites, 0.19 for the southern Karnataka transitional zone rocks and 0.13 for the northern Tamil Nadu granulites. Consistently low X(H2O) values, at about 0.2, were obtained for the orthopyroxene-bearing assemblages.
Resumo:
Texture development in commercially pure titanium during equal channel angular extrusion (ECAE) through Routes A, Be and C has been studied up to three passes at 400 C. Textures were measured using X-ray diffraction, while the microstructural analyses were performed using electron back-scattered diffraction as well as transmission electron microscopy. Occurrences of dynamic restoration processes (recovery and recrystallization) were clearly noticed at all levels of deformations. Finally, the textures were simulated using a viscoplastic polycrystal self-consistent (VPSC) model. Simulations were performed incorporating basal, prismatic and pyramidal slip systems as well as tensile and compressive twinning. The simulated textures corroborate well with experimental textures in spite of the occurrence of dynamic restoration processes. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Channel assignment in multi-channel multi-radio wireless networks poses a significant challenge due to scarcity of number of channels available in the wireless spectrum. Further, additional care has to be taken to consider the interference characteristics of the nodes in the network especially when nodes are in different collision domains. This work views the problem of channel assignment in multi-channel multi-radio networks with multiple collision domains as a non-cooperative game where the objective of the players is to maximize their individual utility by minimizing its interference. Necessary and sufficient conditions are derived for the channel assignment to be a Nash Equilibrium (NE) and efficiency of the NE is analyzed by deriving the lower bound of the price of anarchy of this game. A new fairness measure in multiple collision domain context is proposed and necessary and sufficient conditions for NE outcomes to be fair are derived. The equilibrium conditions are then applied to solve the channel assignment problem by proposing three algorithms, based on perfect/imperfect information, which rely on explicit communication between the players for arriving at an NE. A no-regret learning algorithm known as Freund and Schapire Informed algorithm, which has an additional advantage of low overhead in terms of information exchange, is proposed and its convergence to the stabilizing outcomes is studied. New performance metrics are proposed and extensive simulations are done using Matlab to obtain a thorough understanding of the performance of these algorithms on various topologies with respect to these metrics. It was observed that the algorithms proposed were able to achieve good convergence to NE resulting in efficient channel assignment strategies.
Resumo:
The microstructure, thermal stability and hardness of ultra-fine grained (UFG) Ni produced by 12 passes of equal channel angular pressing (ECAP) through the route Bc were studied. Comparing the microstructure and hardness of the as-ECAPed samples with the published data on UFG Ni obtained after 8 passes of ECAP through the route Bc reveals a smaller average grain size (230 nm in the present case compared with 270 nm in 8-pass Ni), significantly lower dislocation density (1.08 x 10(14) m(-2) compared with 9 x 10(14) m(-2) in 8-pass Ni) and lower hardness (2 GPa compared with 2.45 GPa for 8-pass Ni). Study of the thermal stability of the 12-pass UFG Ni revealed that recovery is dominant in the temperature range 150-250A degrees C and recrystallisation occurred at temperatures > 250 A degrees C. The UFG microstructure is relatively stable up to about 400 A degrees C. Due to the lower dislocation density and consequently a lower stored energy, the recrystallisation of 12-pass ECAP Ni occurred at a higher temperature (similar to 250 A degrees C) compared with the 8-pass Ni (similar to 200 A degrees C). In the 12-pass Nickel, hardness variation shows that its dependence on grain size is inversely linear rather than the common grain size(-0.5) dependence.
Resumo:
In this paper, a physically based analytical quantum linear threshold voltage model for short channel quad gate MOSFETs is developed. The proposed model, which is suitable for circuit simulation, is based on the analytical solution of 3-D Poisson and 2-D Schrodinger equation. Proposed model is fully validated against the professional numerical device simulator for a wide range of device geometries and also used to analyze the effect of geometry variation on the threshold voltage.
Resumo:
The neuronal sodium channels are responsible for the rising phase of action potential and are composed of three subunits, of which the alpha-subunit has been shown to be adequate for most of its functional properties. We have stably expressed the rat brain type IIA sodium channel alpha-subunit in CHO cell tine using a CMV promoter-based vector. The expression was confirmed by detecting a 6.5 kb RNA corresponding to sodium channel alpha-subunit using Northern hybridization. The cells stably expressing the alpha-subunit, yield isolated sodium currents of amplitudes greater than 4nA when studied in whole-cell configuration of the patch-clamp technique. The sodium currents are characterized by activation and inactivation properties similar to neuronal sodium channels, and are blocked by the voltage gated sodium channel blocker tetrodotoxin (TTX).
Resumo:
In this paper, we study the Foschini Miljanic algorithm, which was originally proposed in a static channel environment. We investigate the algorithm in a random channel environment, study its convergence properties and apply the Gerschgorin theorem to derive sufficient conditions for the convergence of the algorithm. We apply the Foschini and Miljanic algorithm to cellular networks and derive sufficient conditions for the convergence of the algorithm in distribution and validate the results with simulations. In cellular networks, the conditions which ensure convergence in distribution can be easily verified.
Resumo:
Frequency-domain scheduling and rate adaptation have helped next generation orthogonal frequency division multiple access (OFDMA) based wireless cellular systems such as Long Term Evolution (LTE) achieve significantly higher spectral efficiencies. To overcome the severe uplink feedback bandwidth constraints, LTE uses several techniques to reduce the feedback required by a frequency-domain scheduler about the channel state information of all subcarriers of all users. In this paper, we analyze the throughput achieved by the User Selected Subband feedback scheme of LTE. In it, a user feeds back only the indices of the best M subbands and a single 4-bit estimate of the average rate achievable over all selected M subbands. In addition, we compare the performance with the subband-level feedback scheme of LTE, and highlight the role of the scheduler by comparing the performances of the unfair greedy scheduler and the proportional fair (PF) scheduler. Our analysis sheds several insights into the working of the feedback reduction techniques used in LTE.
Resumo:
The impulse response of a typical wireless multipath channel can be modeled as a tapped delay line filter whose non-zero components are sparse relative to the channel delay spread. In this paper, a novel method of estimating such sparse multipath fading channels for OFDM systems is explored. In particular, Sparse Bayesian Learning (SBL) techniques are applied to jointly estimate the sparse channel and its second order statistics, and a new Bayesian Cramer-Rao bound is derived for the SBL algorithm. Further, in the context of OFDM channel estimation, an enhancement to the SBL algorithm is proposed, which uses an Expectation Maximization (EM) framework to jointly estimate the sparse channel, unknown data symbols and the second order statistics of the channel. The EM-SBL algorithm is able to recover the support as well as the channel taps more efficiently, and/or using fewer pilot symbols, than the SBL algorithm. To further improve the performance of the EM-SBL, a threshold-based pruning of the estimated second order statistics that are input to the algorithm is proposed, and its mean square error and symbol error rate performance is illustrated through Monte-Carlo simulations. Thus, the algorithms proposed in this paper are capable of obtaining efficient sparse channel estimates even in the presence of a small number of pilots.
Resumo:
The Ca2+-activated K+ channel in endocrine cells is responsible for membrane hyperpolarization and rhythmic firing of action potentials. The probability of opening of this channel is sensitive to intracellular-free Ca2+ concentration. In this study we have identified one such large conductance Ca2+-activated K+ channel in alpha T3-1 pituitary gonadotroph cell. This channel is ohmic with a unit conductance of 170 pS in symmetrical KCl (135 mM) and its current reverses near zero millivolts. When more than one channel is present in the patch membrane they open and close independent of each other, exhibiting no cooperativity between them as expected of a binomial distribution. The regulatory mechanism of this channel in modulating hormone secretion from alpha T3-1 gonadotroph cells is indicated.
Resumo:
In this letter, we propose a method for blind separation of d co-channel BPSK signals arriving at an antenna array. Our method involves two steps. In the first step, the received data vectors at the output of the array is grouped into 2d clusters. In the second step, we assign the 2d d-tuples with ±1 elements to these clusters in a consistent fashion. From the knowledge of the cluster to which a data vector belongs, we estimate the bits transmitted at that instant. Computer simulations are used to study the performance of our method
Resumo:
The source localization in shallow water is beset with problems arising from the presence of a large number of correlated multipaths. Nevertheless, given a complete knowledge of the water channel it is definitely possible to localize a source. A complete knowledge of the channel, however, is rarely available under most practical conditions. A new approach is proposed wherein the bottom reflection coefficients are not required; hence the bottom conditions need not be known. Further, because of the use of signal subspace for localization, the proposed approach is robust against the background noise (-20 dB) and channel depth uncertainty (10 lambda). All these nice features of the proposed approach are possible only when the array size is large (>40 sensors). (C) 1995 Acoustical Society of America.
Resumo:
A chimeric channel, 4N/1, was generated from two outwardly rectifying K+ channels by linking the N-terminal cytoplasmic domain of hKv1.4 (N terminus ball and chain of hKv1.4) with the transmembrane body of hKvl.l (Delta 78N1 construct of hKvl.l). The recombinant channel has properties similar to the six transmembrane inward rectifiers and opens on hyperpolarization with a threshold of activation at -90 mV. Outward currents are seen on depolarization provided the channel is first exposed to a hyperpolarizing pulse of -100mV or more. Hyperpolarization at and beyond -130mV provides evidence of channel deactivation. Delta 78N1 does not show inward currents on hyperpolarization but does open on depolarizing from -80mV with characteristics similar to native hKvl.l. The outward currents seen in both Delta 78N1 and 4N/1 inactivate slowly at rates consistent with C-type inactivation. The inward rectification of the 4N/1 chimera is consistent with the inactivation gating mechanism. This implies that the addition of the N-terminus from hKv1.4 to hKvl.l shifts channel activation to hyperpolarizing potentials. These results suggest a mechanism involving the N-terminal cytoplasmic domain for conversion of outward rectifiers to inward rectifiers. (C) 1999 Lippincott Williams & Wilkins.
Resumo:
A one-dimensional water wire has been characterized by X-ray diffraction in single crystals of the tripeptide Ac-Phe-Pro-Trp-OMe. Crystals in the hexagonal space group P6(5) reveal a central hydrophobic channel lined by aromatic residues which entraps an approximately linear array of hydrogen bonded water molecules. The absence of any significant van der Waals contact with the channel walls suggests that the dominant interaction between the ``water wire'' and ``peptide nanotube'' is electrostatic in origin. An energy difference of 16 KJmol(-1) is estimated for the distinct orientations of the water wire dipole with respect to the macrodipole of the peptide nanotube. The structural model suggests that Grotthuss type proton conduction may, through constricted hydrophobic channels, be facilitated by concerted, rotational reorientation of water molecules.