972 resultados para Hardware Implementation
Resumo:
This paper discusses the areawide Dynamic ROad traffic NoisE (DRONE) simulator, and its implementation as a tool for noise abatement policy evaluation. DRONE involves integrating a road traffic noise estimation model with a traffic simulator to estimate road traffic noise in urban networks. An integrated traffic simulation-noise estimation model provides an interface for direct input of traffic flow properties from simulation model to noise estimation model that in turn estimates the noise on a spatial and temporal scale. The output from DRONE is linked with a geographical information system for visual representation of noise levels in the form of noise contour maps.
Resumo:
Patients undergoing radiation therapy for cancer face a series of challenges that require support from a multidisciplinary team which includes radiation oncology nurses. However, the specific contribution of nursing, and the models of care that best support the delivery of nursing interventions in the radiotherapy setting, is not well described. In this case study, the Interaction Model of Client Health Behaviour and the associated principles of person-centred care were incorporated into a new model of care that was implemented in one radiation oncology setting in Brisbane, Australia. The new model of care was operationalised through a Primary Nursing/Collaborative Practice framework. To evaluate the impact of the new model for patients and health professionals, multiple sources of data were collected from patients and clinical staff prior to, during, and 18 months following introduction of the practice redesign. One cohort of patients and clinical staff completed surveys incorporating measures of key outcomes immediately prior to implementation of the model, while a second cohort of patients and clinical staff completed these same surveys 18 months following introduction of the model. In-depth interviews were also conducted with nursing, medical and allied health staff throughout the implementation phase to obtain a more comprehensive account of the processes and outcomes associated with implementing such a model. From the patients’ perspectives, this study demonstrated that, although adverse effects of radiotherapy continue to affect patient well-being, patients continue to be satisfied with nursing care in this specialty, and that they generally reported high levels of functioning despite undergoing a curative course of radiotherapy. From the health professionals’ perspective, there was evidence of attitudinal change by nursing staff within the radiotherapy department which reflected a greater understanding and appreciation of a more person-centred approach to care. Importantly, this case study has also confirmed that a range of factors need to be considered when redesigning nursing practice in the radiotherapy setting, as the challenges associated with changing traditional practices, ensuring multidisciplinary approaches to care, and resourcing a new model were experienced. The findings from this study suggest that the move from a relatively functional approach to a person-centred approach in the radiotherapy setting has contributed to some improvements in the provision of individualised and coordinated patient care. However, this study has also highlighted that primary nursing may be limited in its approach as a framework for patient care unless it is supported by a whole team approach, an appropriate supportive governance model, and sufficient resourcing. Introducing such a model thus requires effective education, preparation and ongoing support for the whole team. The challenges of providing care in the context of complex interdisciplinary relationships have been highlighted by this study. Aspects of this study may assist in planning further nursing interventions for patients undergoing radiotherapy for cancer, and continue to enhance the contribution of the radiation oncology nurse to improved patient outcomes.
Resumo:
This paper presents a novel approach to road-traffic control for interconnected junctions. With a local fuzzy-logic controller (FLC) installed at each junction, a dynamic-programming (DP) technique is proposed to derive the green time for each phase in a traffic-light cycle. Coordination parameters from the adjacent junctions are also taken into consideration so that organized control is extended beyond a single junction. Instead of pursuing the absolute optimization of traffic delay, this study examines a practical approach to enable the simple implementation of coordination among junctions, while attempting to reduce delays, if possible. The simulation results show that the delay per vehicle can be substantially reduced, particularly when the traffic demand reaches the junction capacity. The implementation of this controller does not require complicated or demanding hardware, and such simplicity makes it a useful tool for offline studies or realtime control purposes.
Resumo:
This paper presents a continuous isotropic spherical omnidirectional drive mechanism that is efficient in its mechanical simplicity and use of volume. Spherical omnidirectional mechanisms allow isotropic motion, although many are limited from achieving true isotropic motion by practical mechanical design considerations. The mechanism presented in this paper uses a single motor to drive a point on the great circle of the sphere parallel to the ground plane, and does not require a gearbox. Three mechanisms located 120 degrees apart provide a stable drive platform for a mobile robot. Results show the omnidirectional ability of the robot and demonstrate the performance of the spherical mechanism compared to a popular commercial omnidirectional wheel over edges of varying heights and gaps of varying widths.
Resumo:
Voice recognition is one of the key enablers to reduce driver distraction as in-vehicle systems become more and more complex. With the integration of voice recognition in vehicles, safety and usability are improved as the driver’s eyes and hands are not required to operate system controls. Whilst speaker independent voice recognition is well developed, performance in high noise environments (e.g. vehicles) is still limited. La Trobe University and Queensland University of Technology have developed a low-cost hardware-based speech enhancement system for automotive environments based on spectral subtraction and delay–sum beamforming techniques. The enhancement algorithms have been optimised using authentic Australian English collected under typical driving conditions. Performance tests conducted using speech data collected under variety of vehicle noise conditions demonstrate a word recognition rate improvement in the order of 10% or more under the noisiest conditions. Currently developed to a proof of concept stage there is potential for even greater performance improvement.
Resumo:
While critical success factors (CSFs) of enterprise system (ES) implementation are mature concepts and have received considerable attention for over a decade, researchers have very often focused on only a specific aspect of the implementation process or a specific CSF. Resultantly, there is (1) little research documented that encompasses all significant CSF considerations and (2) little empirical research into the important factors of successful ES implementation. This paper is part of a larger research effort that aims to contribute to understanding the phenomenon of ES CSFs, and reports on preliminary findings from a case study conducted at a Queensland University of Technology (QUT) in Australia. This paper reports on an empirically derived CSFs framework using a directed content analysis of 79 studies; from top IS outlets, employing the characteristics of the analytic theory, and from six different projects implemented at QUT.
Resumo:
Given there is currently a migration trend from traditional electrical supervisory control and data acquisition (SCADA) systems towards a smart grid based approach to critical infrastructure management. This project provides an evaluation of existing and proposed implementations for both traditional electrical SCADA and smart grid based architectures, and proposals a set of reference requirements which test bed implementations should implement. A high-level design for smart grid test beds is proposed and initial implementation performed, based on the proposed design, using open source and freely available software tools. The project examines the move towards smart grid based critical infrastructure management and illustrates the increased security requirements. The implemented test bed provides a basic framework for testing network requirements in a smart grid environment, as well as a platform for further research and development. Particularly to develop, implement and test network security related disturbances such as intrusion detection and network forensics. The project undertaken proposes and develops an architecture of the emulation of some smart grid functionality. The Common Open Research Emulator (CORE) platform was used to emulate the communication network of the smart grid. Specifically CORE was used to virtualise and emulate the TCP/IP networking stack. This is intended to be used for further evaluation and analysis, for example the analysis of application protocol messages, etc. As a proof of concept, software libraries were designed, developed and documented to enable and support the design and development of further smart grid emulated components, such as reclosers, switches, smart meters, etc. As part of the testing and evaluation a Modbus based smart meter emulator was developed to provide basic functionality of a smart meter. Further code was developed to send Modbus request messages to the emulated smart meter and receive Modbus responses from it. Although the functionality of the emulated components were limited, it does provide a starting point for further research and development. The design is extensible to enable the design and implementation of additional SCADA protocols. The project also defines an evaluation criteria for the evaluation of the implemented test bed, and experiments are designed to evaluate the test bed according to the defined criteria. The results of the experiments are collated and presented, and conclusions drawn from the results to facilitate discussion on the test bed implementation. The discussion undertaken also present possible future work.