941 resultados para HISTONE CHAPERONE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mouse mammary tumor virus (MMTV) promoter is regulated by steroid hormones through a hormone-responsive region that is organized in a positioned nucleosome. Hormone induction leads to a structural change of this nucleosome which makes its DNA more sensitive to cleavage by DNase I and enables simultaneous binding of all relevant transcription factors. In cells carrying either episomal or chromosomally integrated MMTV promoters, moderate acetylation of core histones, generated by treatment with low concentrations of the histone deacetylase inhibitors sodium butyrate or trichostatin A, enhances transcription from the MMTV promoter in the absence of hormone and potentiates transactivation by either glucocorticoids or progestins. At higher concentrations, histone deacetylase inhibitors reduce basal and hormone induced MMTV transcription. Inducing inhibitor concentrations lead to the same type of nucleosomal DNase I hypersensitivity as hormone treatment, suggesting that moderate acetylation of core histone activates the MMTV promoter by mechanisms involving chromatin remodeling similar to that generated by the inducing hormones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone H1, a major structural component of chromatin fiber, is believed to act as a general repressor of transcription. To investigate in vivo the role of this protein in transcription regulation during development of a multicellular organism, we made transgenic tobacco plants that overexpress the gene for Arabidopsis histone H1. In all plants that overexpressed H1 the total H1-to-DNA ratio in chromatin increased 2.3-2.8 times compared with the physiological level. This was accompanied by 50-100% decrease of native tobacco H1. The phenotypic changes in H1-overexpressing plants ranged from mild to severe perturbations in morphological appearance and flowering. No correlation was observed between the extent of phenotypic change and the variation in the amount of overexpressed H1 or the presence or absence of the native tobacco H1. However, the severe phenotypic changes were correlated with early occurrence during plant growth of cells with abnormally heterochromatinized nuclei. Such cells occurred considerably later in plants with milder changes. Surprisingly, the ability of cells with highly heterochromatinized nuclei to fulfill basic physiological functions, including differentiation, was not markedly hampered. The results support the suggestion that chromatin structural changes dependent on H1 stoichiometry and on the profile of major H1 variants have limited regulatory effect on the activity of genes that control basal cellular functions. However, the H1-mediated chromatin changes can be of much greater importance for the regulation of genes involved in control of specific developmental programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the ability of the histone (H3-H4)2 tetramer, the central part of the nucleosome of eukaryotic chromatin, to form particles on DNA minicircles of negative and positive superhelicities, and the effect of relaxing these particles with topoisomerase I. The results show that even modest positive torsional stress from the DNA, and in particular that generated by DNA thermal fluctuations, can trigger a major, reversible change in the conformation of the particle. Neither a large excess of naked DNA, nor a crosslink between the two H3s prevented the transition from one form to the other. This suggested that during the transition, the histones neither dissociated from the DNA nor were even significantly reshuffled. Moreover, the particles reconstituted on negatively and positively supercoiled minicircles look similar under electron microscopy. These data agree best with a transition involving a switch of the wrapped DNA from a left- to a right-handed superhelix. It is further proposed, based on the left-handed overall superhelical conformation of the tetramer within the octamer [Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E. & Moudrianakis, E. N. (1991) Proc. Natl.Acad. Sci. USA 88, 10148-10152] that this change in DNA topology is mediated by a similar change in the topology of the tetramer itself, which may occur through a rotation (or a localized deformation) of the two H3-H4 dimers about their H3-H3 interface. Potential implications of this model for nucleosome dynamics in vivo are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The histone gene family in mammals consists of 15-20 genes for each class of nucleosomal histone protein. These genes are classified as either replication-dependent or -independent in regard to their expression in the cell cycle. The expression of the replication-dependent histone genes increases dramatically as the cell prepares to enter S phase. Using mouse histone genes, we previously identified a coding region activating sequence (CRAS) involved in the upregulation of at least two (H2a and H3) and possibly all nucleosomal replication-dependent histone genes. Mutation of two seven-nucleotide elements, alpha and omega, within the H3 CRAS causes a decrease in expression in stably transfected Chinese hamster ovary cells comparable with the effect seen upon deletion of the entire CRAS. Further, nuclear proteins interact in a highly specific manner with nucleotides within these sequences. Mutation of these elements abolishes DNA/protein interactions in vitro. Here we report that the interactions of nuclear factors with these elements are differentially regulated in the cell cycle and that protein interactions with these elements are dependent on the phosphorylation/dephosphorylation state of the nuclear factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free GroEL binds denatured proteins very tightly: it retards the folding of barnase 400-fold and catalyzes unfolding fluctuations in native barnase and its folding intermediate. GroEL undergoes an allosteric transition from its tight-binding T-state to a weaker binding R-state on the cooperative binding of nucleotides (ATP/ADP) and GroES. The preformed GroEL.GroES.nucleotide complex retards the folding of barnase by only a factor of 4, and the folding rate is much higher than the ATPase activity that releases GroES from the complex. Binding of GroES and nucleotides to a preformed GroEL.denatured-barnase complex forms an intermediately fast-folding complex. We propose the following mechanism for the molecular chaperone. Denatured proteins bind to the resting GroEL.GroES.nucleotide complex. Fast-folding proteins are ejected as native structures before ATP hydrolysis. Slow-folding proteins enter chaperoning cycles of annealing and folding after the initial ATP hydrolysis. This step causes transient release of GroES and formation of the GroEL.denatured-protein complexes with higher annealing potential. The intermediately fast-folding complex is formed on subsequent rebinding of GroES. The ATPase activity of GroEL.GroES is thus the gatekeeper that selects for initial entry of slow-folding proteins to the chaperone action and then pumps successive transitions from the faster-folding R-states to the tighter-binding/stronger annealing T-states. The molecular chaperone acts as a combination of folding cage and an annealing machine.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To ascertain the mechanism by which nucleosomes are assembled by factors derived from Drosophila embryos, two proteins termed Drosophila chromatin assembly factors (CAFs) 1 and 4 (dCAF-1 and dCAF-4) were fractionated and purified from a Drosophila embryo extract. The assembly of chromatin by dCAF-1, dCAF-4, purified histones, ATP, and DNA is a process that generates regularly spaced nucleosomal arrays with a repeat length that resembles that of bulk native Drosophila chromatin and is not obligatorily coupled to DNA replication. The assembly of chromatin by dCAF-1 and dCAF-4 is nearly complete within 10 min. The dCAF-1 activity copurified with the Drosophila version of chromatin assembly factor-1 (CAF-1), a factor that has been found to be required for the assembly of chromatin during large tumor (T) antigen-mediated, simian virus 40 (SV40) origin-dependent DNA replication. The dCAF-4 activity copurified with a 56-kDa core-histone-binding protein that was purified to > 90% homogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The histones of all eukaryotes show only a low degree of primary structure homology, but our earlier crystallographic results defined a three-dimensional structural motif, the histone fold, common to all core histones. We now examine the specific architectural patterns within the fold and analyze the nature of the amino acid residues within its functional segments. The histone fold emerges as a fundamental protein dimerization motif while the differentiations of the tips of the histone dimers appear to provide the rules of core octamer assembly and the basis for nucleosome regulation. We present evidence for the occurrence of the fold from archaebacteria to mammals and propose the use of this structural motif to define a distinct family of proteins, the histone fold superfamily. It appears that evolution has conserved the conformation of the fold even through variations in primary structure and among proteins with various functional roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of histone H1 isolated from chicken erythrocytes with restriction fragments from plasmids pBR322 and pUC19 was studied by gel electrophoresis. Certain restriction fragments exhibited unusually high affinity for the histone, forming high molecular mass complexes at protein to DNA ratios at which the other fragments did not show evidence for binding. The highly preferred fragments are intrinsically curved, as judged by their electrophoretic mobility in polyacrylamide gels, by computer modeling, and by imaging with scanning force microscopy. However, control experiments with either curved portions of the same fragments or highly curved kinetoplast DNA fragments showed that the presence of curvature alone was not sufficient for preferential binding. By using various restriction fragments centered around the highly preferred sequence, it was found that the high-affinity binding required in addition the presence of specific sequences on both sides of the region of curvature. Thus, both curvature and the presence of specific sites seem to be required to generate high affinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Escherichia coli the heat shock response is under the positive control of the sigma 32 transcription factor. Three of the heat shock proteins, DnaK, DnaI, and GrpE, play a central role in the negative autoregulation of this response at the transcriptional level. Recently, we have shown that the DnaK and DnaJ proteins can compete with RNA polymerase for binding to the sigma 32 transcription factor in the presence of ATP, by forming a stable DnaJ-sigma 32-DnaK protein complex. Here, we report that DnaJ protein can catalytically activate DnaK's ATPase activity. In addition, DnaJ can activate DnaK to bind to sigma 32 in an ATP-dependent reaction, forming a stable sigma 32-DnaK complex. Results obtained with two DnaJ mutants, a missense and a truncated version, suggest that the N-terminal portion of DnaJ, which is conserved in all family members, is essential for this activation reaction. The activated form of DnaK binds preferentially to sigma 32 versus the bacteriophage lambda P protein substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macronuclei of the ciliated protozoan Tetrahymena thermophila possess a histone acetyltransferase activity closely associated with transcription-related histone acetylation. Nothing definitive is known concerning the polypeptide composition of this activity in Tetrahymena or any comparable activity from any cellular source. An acetyltransferase activity gel assay was developed which identifies a catalytically active subunit of this enzyme in Tetrahymena. This activity gel assay detects a single polypeptide of 55 kDa (p55) in crude macronuclear extracts, as well as in column-purified fractions, which incorporates [3H]acetate from [3H]acetyl-CoA into core histone substrates polymerized directly into SDS polyacrylamide gels. p55 copurifies precisely with acetyltransferase activity through all chromatographic steps examined, including reverse-phase HPLC. Gel-filtration chromatography of this activity indicates a molecular mass of 220 kDa, suggesting that the native enzyme may consist of four identical subunits of 55 kDa. Furthermore, p55 is tightly associated with di- and greater polynucleosomes and therefore may be defined as a component of histone acetyltransferase type A--i.e., chromatin associated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H1 histones bind to the linker DNA between nucleosome core particles and facilitate the folding of chromatin into a 30-nm fiber. Mice contain at least seven nonallelic subtypes of H1, including the somatic variants H1a through H1e, the testis-specific variant H1t, and the replacement linker histone H1(0). H1(0) accumulates in terminally differentiating cells from many lineages, at about the time when the cells cease dividing. To investigate the role of H1(0) in development, we have disrupted the single-copy H1(0) gene by homologous recombination in mouse embryonic stem cells. Mice homozygous for the mutation and completely lacking H1(0) mRNA and protein grew and reproduced normally and exhibited no anatomic or histologic abnormalities. Examination of tissues in which H1(0) is normally present at high levels also failed to reveal any abnormality in cell division patterns. Chromatin from H1(0)-deficient animals showed no significant change in the relative proportions of the other H1 subtypes or in the stoichiometry between linker histones and nucleosomes, suggesting that the other H1 histones can compensate for the deficiency in H1(0) by occupying sites that normally contain H1(0). Our results indicate that despite the unique properties and expression pattern of H1(0), its function is dispensable for normal mouse development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has shown that N-terminal deletions of yeast histone H3 cause a 2- to 4-fold increase in the induction of GAL1 and a number of other genes involved in galactose metabolism. In contrast, deletions at the H4 N terminus cause a 10- to 20-fold decrease in the induction of these same GAL genes. However, H3 and H4 N-terminal deletions each decrease PHO5 induction only 2- to 4-fold. To define the GAL1 gene regulatory elements through which the histone N termini activate or repress transcription, fusions were made between GAL1 and PHO5 promoter elements attached to a beta-galactosidase reporter gene. We show here that GAL1 hyperactivation caused by the H3 N-terminal deletion delta 4-15 is linked to the upstream activation sequence. Conversely, the relative decrease in GAL1 induction caused by the H4N-terminal deletion delta 4-28 is linked to the downstream promoter which contains the TATA element. These data indicate that the H3 N terminus is required for the repression of the GAL1 upstream element, whereas the H4N terminus is required for the activation of the GAL1 downstream promoter element.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clusterina (CLU) è una proteina ubiquitaria, presente nella maggior parte dei fluidi corporei e implicata in svariati processi fisiologici. Dalla sua scoperta fino ad oggi, CLU è risultata essere una proteina enigmatica, la cui funzione non è ancora stata compresa appieno. Il gene codifica per 3 varianti trascrizionali identificate nel database NCBI con i codici: NM_001831 (CLU 1 in questo lavoro di tesi), NR_038335 (CLU 2 in questo lavoro di tesi) e NR_045494 (CLU 3 in questo lavoro di tesi). Tutte le varianti sono trascritte come pre-mRNA contenenti 9 esoni e 8 introni e si differenziano per l’esone 1, la cui sequenza è unica e caratteristica di ogni variante. Sebbene in NCBI sia annotato che le varianti CLU 2 e CLU 3 non sono codificanti, tramite analisi bioinformatica è stato predetto che da tutti e tre i trascritti possono generarsi proteine di differente lunghezza e localizzazione cellulare. Tra tutte le forme proteiche ipotizzate, l’unica a essere stata isolata e sequenziata è quella tradotta dall’AUG presente sull’esone 2 che dà origine a una proteina di 449 aminoacidi. Il processo di maturazione prevede la formazione di un precursore citoplasmatico (psCLU) che subisce modificazioni post-traduzionali tra cui formazione di ponti disolfuro, glicosilazioni, taglio in due catene denominate β e α prima di essere secreta come eterodimero βα (sCLU) nell’ambiente extracellulare, dove esercita la sua funzione di chaperone ATP-indipendente. Oltre alla forma extracellulare, è possibile osservare una forma intracellulare con localizzazione citosolica la cui funzione non è stata ancora completamente chiarita. Questo lavoro di tesi si è prefissato lo scopo di incrementare le conoscenze in merito ai trascritti CLU 1 e CLU 2 e alla loro regolazione, oltre ad approfondire il ruolo della forma citosolica della proteina in relazione al signaling di NF-kB che svolge un ruolo importante nel processo di sviluppo e metastatizzazione del tumore. Nella prima parte, uno screening di differenti linee cellulari, quali cellule epiteliali di prostata e di mammella, sia normali sia tumorali, fibroblasti di origine polmonare e linfociti di tumore non-Hodgkin, ha permesso di caratterizzare i trascritti CLU 1 e CLU 2. Dall’analisi è emerso che la sequenza di CLU 1 è più corta al 5’ rispetto a quella depositata in NCBI con l’identificativo NM_001831 e il primo AUG disponibile per l’inizio della traduzione è localizzato sull’esone 2. È stato dimostrato che CLU 2, al contrario di quanto riportato in NCBI, è tradotto in proteina a partire dall’AUG presente sull’esone 2, allo stesso modo in cui viene tradotto CLU 1. Inoltre, è stato osservato che i livelli d’espressione dei trascritti variano notevolmente tra le diverse linee cellulari e nelle cellule epiteliali CLU 2 è espressa sempre a bassi livelli. In queste cellule, l’espressione di CLU 2 è silenziata per via epigenetica e la somministrazione di farmaci capaci di rendere la cromatina più accessibile, quali tricostatina A e 5-aza-2’-deossicitidina, è in grado di incrementarne l’espressione. Nella seconda parte, un’analisi bioinformatica seguita da saggi di attività in vitro in cellule epiteliali prostatiche trattate con farmaci epigenetici, hanno permesso di identificare, per la prima volta in uomo, una seconda regione regolatrice denominata P2, capace di controllare l’espressione di CLU 2. Rispetto a P1, il classico promotore di CLU già ampiamente studiato da altri gruppi di ricerca, P2 è un promotore debole, privo di TATA box, che nelle cellule epiteliali prostatiche è silente in condizioni basali e la cui attività incrementa in seguito alla somministrazione di farmaci epigenetici capaci di alterare le modificazioni post-traduzionali delle code istoniche nell’intorno di P2. Ne consegue un rilassamento della cromatina e un successivo aumento di trascrizione di CLU 2. La presenza di un’isola CpG differentemente metilata nell’intorno di P1 spiegherebbe, almeno in parte, i differenti livelli di espressione di CLU che si osservano tra le diverse linee cellulari. Nella terza parte, l’analisi del pathway di NF-kB in un modello sperimentale di tumore prostatico in cui CLU è stata silenziata o sovraespressa, ha permesso di capire come la forma citosolica di CLU abbia un ruolo inibitorio nei confronti dell’attività del fattore trascrizionale NF-kB. CLU inibisce la fosforilazione e l’attivazione di p65, il membro più rappresentativo della famiglia NF-kB, con conseguente riduzione della trascrizione di alcuni geni da esso regolati e coinvolti nel rimodellamento della matrice extracellulare, quali l’urochinasi attivatrice del plasminogeno, la catepsina B e la metallo proteinasi 9. È stato dimostrato che tale inibizione non è dovuta a un’interazione fisica diretta tra CLU e p65, per cui si suppone che CLU interagisca con uno dei componenti più a monte della via di segnalazione responsabile della fosforilazione ed attivazione di p65.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Acetylation and deacetylation at specific lysine (K) residues is mediated by histone acetylases (HATs) and deacetylases (HDACs), respectively. HATs and HDACs act on both histone and non-histone proteins, regulating various processes, including cardiac impulse propagation. Aim of the present work was to establish whether the function of the Ca2+ ATPase SERCA2, one of the major players in Ca2+ reuptake during excitation-contraction coupling in cardiac myocytes (CMs), could be modulated by direct K acetylation. Materials and methods: HL-1 atrial mouse cells (donated by Prof. Claycomb), zebrafish and Streptozotocin-induced diabetic rat CMs were treated with the pan-inhibitor of class I and II HDACs suberanilohydroxamic acid (SAHA) for 1.5 hour. Evaluation of SERCA2 acetylation was analyzed by co-immunoprecipitation. SERCA2 activity was measured on microsomes by pyruvate/NADH coupled reaction assay. SERCA2 mutants were obtained after cloning wild-type and mutated sequences into the pCDNA3 vector and transfected into HEK cells. Ca2+ transients in CMs (loading with Fluo3-AM, field stimulation, 0.5 Hz) and in transfected HEK cells (loading with FLUO-4, caffeine pulse) were recorded. Results: Co-Immunoprecipitation experiments performed on HL-1 cells demonstrated a significant increase in the acetylation of SERCA2 after SAHA-treatment (2.5 µM, n=3). This was associated with an increase in SERCA2 activity in microsomes obtained from HL-1 cells, after SAHA exposure (n=5). Accordingly, SAHA-treatment significantly shortened the Ca2+ reuptake time of adult zebrafish CMs. Further, SAHA 2.5 nM restored to control values the recovery time of Ca2+ transients decay in diabetic rat CMs. HDAC inhibition also improved contraction parameters, such as fraction of shortening, and increased pump activity in microsomes isolated from diabetic CMs (n=4). Notably, the K464, identified by bioinformatic tools as the most probable acetylation site on human SERCA2a, was mutated into Glutamine (Q) or Arginine (R) mimicking acetylation and deacetylation respectively. Measurements of Ca2+ transients in HEK cells revealed that the substitution of K464 with R significantly delayed the transient recovery time, thus indicating that deacetylation has a negative impact on SERCA2 function. Conclusions: Our results indicate that SERCA2 function can be improved by pro-acetylation interventions and that this mechanism of regulation is conserved among species. Therefore, the present work provides the basis to open the search for novel pharmacological tools able to specifically improve SERCA2 activity in diseases where its expression and/or function is impaired, such as diabetic cardiomyopathy.