920 resultados para Grain Boundaries


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tin dioxide is an n-type semiconductor, which exhibits varistor behavior with high capacity of absorption of energy, whose function is to restrict transitory over-voltages without being destroyed, when it is doped with some oxides. Varistors are used in alternated current fields as well as in continuous current, and it can be applied in great interval of voltages or in great interval of currents. The electric properties of the varistor depend on the defects that happen at the grain boundaries and the adsorption of oxygen. The (98.90-x)%SnO2.0.25%CoO+0.75%MnO2+0.05%Ta2O5+0.05%Tr2O3 systems, in which Tr=La or Nd. Current-voltage measurements were accomplished for determination of the non-linear coefficient were studied. SEM microstructure analysis was made to evaluate the microstructural characteristics of the systems. The results showed that the rare-earth oxides have influenced the electrical behavior presented by the system. (C) 2002 Kluwer Academic Publishers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The non-ohmic properties of the 98.95% SnO2 + 1.0 CoO + 0.05 Nb2O5 (all in mole%) system, as well as the influence of sintering temperature and atmosphere on these properties, were characterized in this study. The maximum non-linear coefficient (alpha = 32) was obtained for a sintering temperature of 1300 degrees C in an oxygen atmosphere and this maximum is associated with the presence of O in SnO2 grain boundaries, as interface defects. Experimental results also indicate thermionic-type conduction mechanisms, which are associated with the potential barrier of Schottky or Poole-Frenkel types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transmission and scanning electron microscopy techniques were used to study the heterogeneities found in the microstructure of (SnO2Co3O4Nb2O5Fe2O3)-Co-.-Nb-.-Fe-. and (SnO2ZnONb2O5FC2O3)-Zn-.-Nb-.-F-. varistors. Second phases encountered both inside the grains and ingrain boundary regions were identified using energy dispersive spectrometry and electron diffraction patterns. Through the electrical characterisation, the presence of iron oxide among the additives was determined to highlight the non-linear properties of the specimens. A discussion on the influence of second phases on the non-linear features of these systems is also addressed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High non-linear J x E electrical characteristic (alpha=41) were obtained in the Nb2O5 and Cr2O3 doped CoO highly densified SnO2 ceramics. X-ray diffraction analysis showed that these ceramics are apparently single phase. Electrical properties and microstructure are highly dependent on the Cr2O3 concentration and on the sintering temperature. Excess of Cr2O3 leads to porous ceramics destroying the material's electrical characteristics probably due to precipitation of second phase of CoCr2O4 Dopant segregation and/or solid solution formation at the grain boundaries can be responsible for the formation of the electrical barriers which originate the varistor behaviour. (C) 1998 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complex analysis of dielectric/capacitance is a very useful approach to separate different polarization contributions existing in polycrystalline ceramics. In this letter, the authors use this type of spectroscopic analysis to separate the bulk's dielectric dipolar relaxation contributions from the polarization contribution due to space charge in the grain boundaries of a CaCu3Ti4O12/CaTiO3 polycrystalline composite system. The bulk dielectric dipolar relaxation was attributed to the self-intertwined domain structures from the CaCu3Ti4O12 phase coupled to the dipole relaxation from the CaTiO3 phase, while the space charge relaxation was attributed to the Schottky-type potential barrier responsible for the highly non-Ohmic properties observed in this composite polycrystalline system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcium copper titanate (CaCu3Ti4O12) ceramic varistors were prepared by solid-state method. The samples were several times heat treated in vacuum and the evolution of electrical characteristics were monitored by current density versus electric field measurements and impedance spectroscopy. Repeated heat treatments in vacuum (900 degrees C for 1 h, 0.01 Torr) lead to a desorption of oxygen adsorbed at the grain boundaries and consequently to a degradation of the varistor properties. During further successive heat treatments some oxygen from the grain interior moves to the grain boundary thereby partially restoring the varistor properties. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, electroactive grain boundaries of highly dense metal oxide SnO2-based polycrystalline varistors were determined by electrostatic force microscopy (EFM). The EFM technique was applied to identify electroactive grain boundaries and thus estimate the amount of active grain boundary, which, in the metal oxide SnO2-based varistor, was calculated at around 85%, i.e., much higher than that found in traditional metal oxide ZnO-based varistors. The mean potential barrier height value obtained from the EFM analysis was in complete agreement with the values calculated from the C-V measurements, together with a complex capacitance plane analysis that validates the methodology proposed here. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond have been studied. Doping level (N-B) of different samples has been varied by the B/C concentration in the gas feed during the growth process and doping saturation has been observed for high B/C ratios. Threshold field (E-th) for electron emission as function of B/C concentration has been measured, and the influences of grain boundaries, doping level and surface morphology on field emission properties have been investigated. Carrier transport through conductive grains and local emission properties of surface sites have been figured out to be two independent limiting effects in respect of field emission. Emitter current densities of 500 nA cm(-2) were obtained using electric fields less than 8 V/mu m. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrical degradation phenomena of zinc oxide-based varistors were studied using a high-energy current pulse and a.c. polarization at different temperatures. Activation energy measurements during the degradation process showed that these phenomena are associated with diffusion and that the diffusion-controlling species are slower than Zn., For degradation promoted by current pulses of 8×20 μs, the Schottky potential barrier deformation was measured. A decrease in height and width of the potential barrier due to the reduction of surface states density, N s, without a significant change in donor density, N d, was observed. To explain these results, a modification of the unstable components model is proposed for the potential barrier in which the degradation is due to oxi-reduction reactions between atomic defects. These reactions promote the elimination of zinc vacancies and/or adsorbed oxygen on the grain boundaries. © 1992 Chapman & Hall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The non-linear electrical properties of CoO-doped and Nb205-doped SnO2 ceramics were characterized. X-ray diffraction and scanning electron microscopy indicated that the system is single phase. The electrical conduction mechanism for low applied electrical field was associated with thermionic emission of the Schottky type. An atomic defect model based on the Schottky double-barrier formation was proposed to explain the origin of the potential barrier at the ceramic grain boundaries. These defects create depletion layers at grain boundaries, favouring electron tunnelling at high values of applied electrical field. © 1998 Chapman & Hall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tin oxide is an n-type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of a non-isovalent oxide doping The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits the SnO2 reduction decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at grain boundary leading to densification and grain growth of this polycrystalline oxide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron Paramagnetic Resonance (EPR) spectra have been obtained at room temperature and at X-band in powders of SnO2 doped with Mn from 0.3 to 10% and submitted to heat treatment from 500 to 900 °C. Mn ions are probably located at particle surfaces as Mn2+, evidenced by its single EPR line which narrows by the exchange interaction effect due to particle growth observed by the BET technique. In samples doped above 1% formation Of Mn3O4 is detected on particle surfaces and a small quantity of Mn is thermally diffused into the bulk as Mn4+. Powders compacted and sintered at 1300 °C confirmed that Mn2+ ions remain at grain boundaries acting as densifying agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of electrochemical potentiokinetic methods as applied to the testing of metals and alloys is followed from its early phases up to its latest advances relating to intergranular corrosion, SCC and pitting corrosion tests of stainless steels and special alloys and to the examination of their structure and properties. In assessing the susceptibility to intergranular and pitting corrosion by potentiokinetic polarization tests, the polarization curves which apply to the bulk of the alloy grains (the matrix) must be distinguished from those pertaining to grain boundaries. Cyclic polarization measurements such as the electrochemical potentiokinetic reactivation (EPR) test make it possible to derive the alloy's susceptibility to intergranular, pitting and crevice corrosion from characteristic potentials and other quantities determined in the 'double loop' test. EPR is rapid and responds to the combined effects of a number of factors that influence the properties of materials. The electrochemical p otentiokinetic tests are sensitive enough to detect structural changes in heat treated materials ranging far beyond the stainless steels alone, and can be used for non-destructive testing aimed at elucidating the properties and behavior of materials. © 2001 Elsevier Science Ltd. All rights reserved.