976 resultados para Frequency-dependent parameters
Resumo:
Distribution of timing signals is an essential factor for the development of digital systems for telecommunication networks, integrated circuits and manufacturing automation. Originally, this distribution was implemented by using the master-slave architecture with a precise master clock generator sending signals to phase-locked loops (PLL) working as slave oscillators. Nowadays, wireless networks with dynamical connectivity and the increase in size and operation frequency of the integrated circuits suggest that the distribution of clock signals could be more efficient if mutually connected architectures were used. Here, mutually connected PLL networks are studied and conditions for synchronous states existence are analytically derived, depending on individual node parameters and network connectivity, considering that the nodes are nonlinear oscillators with nonlinear coupling conditions. An expression for the network synchronisation frequency is obtained. The lock-in range and the transmission error bounds are analysed providing hints to the design of this kind of clock distribution system.
Resumo:
In the present work we report the characterization of PbO-GeO(2) films containing silver nanoparticles (NPs). Radio Frequency (RF) co-sputtering was used for deposition of amorphous films on glass substrates. Targets of 60PbO-40GeO(2) (in wt%) and bulk silver with purity of 99.99% were RF-sputtered using 3.5 m Torr of argon. The concentration of silver and gold NPs in the films was controlled varying the RF-power applied to the targets (40-50W for the PbO-GeO(2) target; 6-8 W for the metallic target). The films obtained were annealed in air at different temperatures and various periods of time. Absorption measurements have shown strong NPs surface plasmon bands. Different widths and peak wavelengths were observed, indicating that size, shape and distribution of the silver NPs are dependent on the deposition process parameters and on the annealing of the samples. X-Ray Fluorescence and Transmission Electron Microscopy were also used to characterize the samples. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective: There is increasing concern that the course of psychiatric disorders may be affected by parameters such as the duration and intensity of symptoms of initial episodes of illness. As this indicates that abnormal function produces long-term changes within the brain, a review of the neuroscience literature regarding neuroplasticity is warranted. Method: This article is a selective review, focusing in particular on results obtained from physiological experiments assessing plasticity within the mammalian neocortex. The possible relevance of results to psychiatry is discussed. Results: While the most dramatic examples of neuroplasticity occur during a critical period of neural development, neuroplasticity can also occur in adult neocortex. Neuroplasticity appears to be activity-dependent: synaptic pathways that are intensively used may become strengthened, and conversely, there may be depression of transmission in infrequently used pathways. Conclusions: Results from neurophysiological experiments fend support to the clinical observation that the intensity and duration of a psychiatric disorder may adversely alter its long-term course. Rapid aggressive treatment may prevent this from occurring. While pharmacotherapy may reduce the duration and severity of symptoms, it may also have an independent, as yet unknown, effect on neuroplasticity.
Resumo:
The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (<20 Omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.
Resumo:
Strain-dependent hydraulic conductivities are uniquely defined by an environmental factor, representing applied normal and shear strains, combined with intrinsic material parameters representing mass and component deformation moduli, initial conductivities, and mass structure. The components representing mass moduli and structure are defined in terms of RQD (rock quality designation) and RMR (rock mass rating) to represent the response of a whole spectrum of rock masses, varying from highly fractured (crushed) rock to intact rock. These two empirical parameters determine the hydraulic response of a fractured medium to the induced-deformations The constitutive relations are verified against available published data and applied to study one-dimensional, strain-dependent fluid flow. Analytical results indicate that both normal and shear strains exert a significant influence on the processes of fluid flow and that the magnitude of this influence is regulated by the values of RQD and RMR.
Resumo:
It has recently been stated that the parametrization of the time variables in the one-dimensional (I-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in land 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters \gamma\ > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.
Resumo:
The technical reliability (i.e., interinstrument and interoperator reliability) of three SEAC-swept frequency bioimpedance monitors was assessed for both errors of measurement and associated analyses. In addition, intraoperator and intrainstrument variability was evaluated for repeat measures over a 4-hour period. The measured impedance values from a range of resistance-capacitance circuits were accurate to within 3% of theoretical values over a range of 50-800 ohms. Similarly, phase was measured over the range 1 degrees-19 degrees with a maximum deviation of 1.3 degrees from the theoretical value. The extrapolated impedance at zero frequency was equally well determined (+/-3%). However, the accuracy of the extrapolated value at infinite frequency was decreased, particularly at impedances below 50 ohms (approaching the lower limit of the measurement range of the instrument). The interinstrument/operator variation for whole body measurements were recorded on human volunteers with biases of less than +/-1% for measured impedance values and less than 3% for phase. The variation in the extrapolated values of impedance at zero and infinite frequencies included variations due to operator choice of the analysis parameters but was still less than +/-0.5%. (C) 1997 Wiley-Liss, Inc.
Resumo:
Aims: We assessed the lower urinary tract symptoms (LUTS) of patients with Parkinson`s disease (PD) and their association with different clinical parameters. Methods: We prospectively evaluated 110 patients (84 men), with a mean age of 61.8 +/- 9.6 years. Mean duration of the disease was 12.3 +/- 7.2 years. Neurological impairment was assessed by the Hoehn-Yahr and the Unified Parkinson Disease Rating scales. LUTS were assessed by the International Continence Society questionnaire. We evaluated the impact of age, PD duration, neurological impairment, gender, and use of anti-Parkinsonian drugs on the voiding function. Results: On multivariate analysis, voiding dysfunction increased with the neurological impairment, but not with patient`s age or disease duration. Quality of life (QOL) was affected by the severity of LUTS, and the symptoms with the worst impact were frequency and nocturia. Sixty-three (57.2%) patients were symptomatic. They did not differ with the asymptomatic as to age and disease duration, but had more severe neurological impairment. No impact on LUTS was associated with the use of levodopa, anticholinergics, and dopamine receptor agonists. Men and women were similarly affected by urinary symptoms. Conclusions: The severity of the neurological disease is the only predictive factor for the occurrence of voiding dysfunction, which affects men and women alike. Neztrourol. Urodynam. 28.510-515, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
We examine subnatural phase-dependent linewidths in the fluorescence spectrum of a three-level atom damped by a narrow-bandwidth squeezed vacuum in a cavity. Using the dressed-atom model approach of a strongly driven three-level cascade system, we derive the master equation of the system from which we obtain simple analytical expressions for the fluorescence spectrum. We show that the phase effects depend on the bandwidths of the squeezed vacuum and the cavity relative to the Rabi frequency of the driving fields. When the squeezing bandwidth is much larger than the Rabi frequency, the spectrum consists of five lines with only the central and outer sidebands dependent on the phase. For a squeezing bandwidth much smaller than the Rabi frequency the number of lines in the spectrum and their phase properties depend on the frequency at which the squeezing and cavity modes are centered. When the squeezing and cavity modes are centered on the inner Rabi sidebands, the spectrum exhibits five lines that are completely independent of the squeezing phase with only the inner Rabi sidebands dependent on the squeezing correlations. Matching the squeezing and cavity modes to the outer Rabi sidebands leads to the disappearance of the inner Rabi sidebands and a strong phase dependence of the central line and the outer Rabi sidebands. We find that in this case the system behaves as an individual two-level system that reveals exactly the noise distribution in the input squeezed vacuum. [S1050-2947(97)00111-X].
Resumo:
We aimed to quantify fatigue frequency and evolution in amyotrophic lateral sclerosis (ALS), and to correlate fatigue with factors such as age, sex, educational level, disease duration, functionality, quality of life, dyspnoea, depression and sleepiness. Sixty ALS patients (test group: TG) selected by El Escorial criteria and 60 normal individuals (control group: CG) matched according to sex and age, were followed every three months, during 9 months, by means of self-report scales: Fatigue Assessment Instrument (Fatigue Severity Scale plus three qualitative subscales); ALS Functional Rating Scale; McGill Quality of Life Questionnaire; dyspnoea analogical scale; Beck Depression Inventory and Epworth Sleepiness Scale. Fatigue was reported by 83% of TG (median: 3.6, interquartile range 1.5-5.4), compared with 20% of CG (median: 1, 1 - 1), and was significantly greater in the TG (p < 0.001, Mann-Whitney test). Fatigue severity increased by the ninth month of the study (p=0.0008, Friedman, Muller-Dunn post test). There was no correlation between fatigue and other parameters, except for an inverse correlation with age at disease onset (p=0.0395, Spearman rank correlation). In conclusion, fatigue was frequent in ALS, greater in the youngest patients and worsened during follow-up. Possibly, ALS related fatigue is an independent factor, which deserves individualized approach and treatment.
Resumo:
GLUT is the major glucose transporter in mammalian cells. Single nucleotide polymorphisms (SNP) at GLUT1 promoter and regulatory regions have been associated to the risk of developing nephropathy in different type 1 and type 2 diabetic populations. It has been demonstrated that differences in allelic and genotypic frequencies of GLUT1 gene (SLC2A1) polymorphisms occur among different populations. Therefore, ethnic differences in distribution of GLUT1 gene polymorphisms may be an important factor in determining gene-disease association. In this study, we investigated the XbaIG > T and HaeIIIT > C polymorphisms in six different Brazilian populations: 102 individuals from Salvador population (Northern Brazil), 56 European descendants from Joinville (South Brazil), 85 Indians from Tiryi tribe (North Brazil) and 127 samples from Southern Brazil: 44 from European descendants, 42 from African descendants and 41 from Japanese descendants. Genotype frequencies from both sites did not differ significantly from those expected under the Hardy-Weinberg equilibrium. We verified that the allele frequencies of both polymorphisms were heterogeneous in these six Brazilian ethnic groups.
Resumo:
The present study investigated morpho-functional relations of the aortic depressor nerve (ADN) 5, 15 and 120 days after the onset of streptozotocin-induced diabetes in rats. Time control animals received vehicle. Under pentobarbital anesthesia, ADN activity was recorded simultaneously with arterial pressure. After the recordings, nerves were prepared for light microscopy study and morphometry. ADN function was accessed by means of pressure-nerve activity curve (fitted by sigmoidal regression) and cross-spectral analysis between mean arterial pressure (MAP) and ADN activity. The relation between morphological (myelinated fibers number and density, total myelin area, total fiber area and percentage of occupancy) and functional (gain, signal/noise relation, frequency) parameters were accessed by linear regression analysis and correlation coefficient calculations. Functional parameters obtained by means of the sigmoidal regression curve as well as by cross-spectral analysis were similar in diabetic and control rats. Morphometric parameters of the ADN were similar between groups 5 days after the onset of diabetes. Average myelin area and myelinated fiber area were significantly smaller on diabetic rats 15 and 120 days after the onset of diabetes, being the myelinated fiber and respective axons area and diameter also smaller on 120 days group. Nevertheless, G ratio (ratio between axon and fiber diameter) was nearly 0.6 and not different between groups or experimental times. No significant relationship between morphological and functional parameters was detected in all experimental groups. The present study suggests that ADN diabetic neuropathy was time-dependent, with damage to myelinated fibers to be the primary event, not evidenced by physiological methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The role of nitric oxide (NO) in the caudal NTS (cNTS) on baseline cardiovascular and respiratory parameters and on changes in respiratory frequency (fR) and cardiovascular responses to chemoreflex activation was evaluated in awake rats. Bilateral microinjections of L-NAME (200 nmoles/50 nL), a non-selective NO synthase (NOS) inhibitor, into the cNTS increased baseline arterial pressure, while microinjections of NPLA (3 pmoles/50 nL), a selective neuronal NOS (nNOS) inhibitor, did not. L-NAME or N-PLA microinjected into the cNTS reduced the increase in fR in response to chemoreflex activation but not cardiovascular responses. These data show that (a) NO produced by non-nNOS in the cNTS is involved in the baseline autonomic control and (b) NO produced by nNOS in the cNTS is involved in modulation of the increase in fR in response to chemoreflex activation but not in the cardiovascular responses. We conclude that NO produced by the neuronal and endothelial NOS play a different role in the cNTS neurons integral to autonomic and respiratory pathways. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
it has been demonstrated that the effect of GH on bone tissue is reduced with aging. In this study we tested the hypothesis that the action of GH on osteoblastic cells is donor-age-dependent by investigating the effect of GH on the development of osteoblastic phenotype in cultures of cells from adolescents (13-16 years old), young adults (18-35 years old), and adults (36-49 years old). Osteoblastic cells derived from human alveolar bone were cultured with or without GH for periods of up to 21 days, and parameters of in vitro osteogenesis and gene expression of osteoblastic markers were evaluated. GH increased culture growth, collagen content and alkaline phosphatase (ALP) activity in cultures from adolescents and young adults, whereas non-significant effect was observed in cultures from adults. While GH significantly increased the bone-like formation in cultures from adolescents, a slightly effect was observed in cultures from young adults and no alteration was detected in cultures from adults. Results from real-time PCR demonstrated that GH upregulated ALP, osteocalcin, type I collagen, and Cbfa1 mRNA levels in cultures from adolescents. In addition, cultures from young adults showed higher ALP mRNA expression and the expression of all evaluated genes was not affected by GH in cultures from adults. These results indicate that the GH effect on both in vitro osteogenesis and gene expression of osteoblastic markers is donor-age-dependent, being more pronounced on cultures from adolescents.
Resumo:
Background: There are no reported studies comparing different parameter settings of the CO(2) laser and irradiation direction considering their effect on the morphology of radicular dentine surface. Purpose: To evaluate the alterations of radicular dentine (cervical, middle, and apical thirds) irradiated with CO(2) laser at different potencies and irradiation directions. Study Design: Roots of 35 canines were prepared and randomly distributed according to the laser potency: GI: no laser treatment (control) (n = 5); GII, 2 W (n = 10); GIII: 4 W (n = 10); GIV: 6 W (n = 10). Each group (excepting GI) was divided in two subgroups according to the irradiation distance (n = 5): (A) parallel and (B) perpendicular to the root canal walls. The roots were splited longitudinally and analyzed by scanning electron microscopy in a qualiquatitative way. The scores were submitted to Kruskal-Wallis and Dunn`s tests. Results: No significant statistical differences were observed among root canal thirds (P > 0.05). The specimens irradiated with 2 W were statistically different (P < 0.05) from those irradiated with 4 and 6 W, which were statistically similar between themselves (P > 0.05). With 2, 4, and 6 W at in parallel irradiation and 2 W in perpendicular direction, the surface showed a fissured aspect. With 4 W in perpendicular direction and 6 W in parallel and perpendicular direction, surface was modified by laser action and exhibited fused areas. Conclusions: The intensity of the effects is dependent on the laser-irradiation dosimetries. Alterations were more intense when higher parameters were used. Microsc. Res. Tech. 72:737-743, 2009. (C) 2009 Wiley-Liss, Inc.