942 resultados para Free Boundary Value Problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper has two objectives: (i) conducting a literature search on the criteria of uniqueness of solution for initial value problems of ordinary differential equations. (ii) a modification of the method of Euler that seems to be able to converge to a solution of the problem, if the solution is not unique

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ESR spectrum of CuCl2 adsorbed onto a silica gel surface chemically modified with the benzimidazole molecule showed that the surface complex has an octahedral symmetry with tetragonal distortion. The measured ESR parameters were g(parallel to) = 2.287, g(perpendicular to) = 2.062, A(parallel to) = 153 G and superhyperfine splitting A(N) = 15 G. The fit of the theoretical expressions to the experimental data was very reasonable. The effective spin orbit coupling constant for Cu2+ was reduced from its normal free ion value of lambda = -828 cm(-1) by as much as 30%. This reduction of lambda is normal in the solid state and in frozen solution complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach is proposed in this work for the treatment of boundary value problems through the Adomian's decomposition method. Although frequently claimed as accurate and having fast convergence rates, the original formulation of Adomian's method does not allow the treatment of homogeneous boundary conditions along closed boundaries. The technique here presented overcomes this difficulty, and is applied to the analysis of magnetohydrodynamic duct flows. Results are in good agreement with finite element method calculations and analytical solutions for square ducts. Therefore, new possibilities appear for the application of Adomian's method in electromagnetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A velocidade de transporte é um dos mais importantes parâmetros no transporte pneumático de sólidos. O êxito no transporte de materiais particulados depende da predição ou da determinação da velocidade mínima de transporte. Uma velocidade acima daquela necessária ao transporte estável das partículas sólidas conduz a um grande consumo de energia devido ao aumento na perda de pressão do sistema, degradação dos sólidos e abrasão dos sólidos e da tubulação. Já uma velocidade abaixo desse valor limite certamente resultará na deposição das partículas sólidas para o fundo da tubulação e conseqüentemente o entupimento desta. Neste trabalho, uma técnica para medir a velocidade mínima de captura de partículas sólidas em uma tubulação na direção horizontal em um sistema de Transporte Pneumático é desenvolvida. Ela baseia-se em observações visuais do comportamento das partículas ao ocorrer a captura, em medidas da velocidade de operação do gás e da massa das partículas capturadas. É realizada ainda a análise qualitativa de alguns parâmetros que influenciam na velocidade de captura das partículas, permitindo uma maior compreensão dos fenômenos envolvidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to develop a numerical method to solve boundary value problems concerning to the use of dispersion model for describing the hydraulic behavior of chemical or biological reactors employed in the wastewater treatment. The numerical method was implemented in FORTRAN language generating a computational program which was applied to solve cases involving reaction kinetics of both integer and fractional orders. The developed method was able to solve the proposed problems evidencing to be a useful tool that provides more accurate design of wastewater treatment reactors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the field of study related to the stability analysis of fluid saturated porous media is investigated. In particular the contribution of the viscous heating to the onset of convective instability in the flow through ducts is analysed. In order to evaluate the contribution of the viscous dissipation, different geometries, different models describing the balance equations and different boundary conditions are used. Moreover, the local thermal non-equilibrium model is used to study the evolution of the temperature differences between the fluid and the solid matrix in a thermal boundary layer problem. On studying the onset of instability, different techniques for eigenvalue problems has been used. Analytical solutions, asymptotic analyses and numerical solutions by means of original and commercial codes are carried out.