865 resultados para Food industry and trade.
Resumo:
An important safety aspect to be considered when foods are enriched with phytosterols and phytostanols is the oxidative stability of these lipid compounds, i.e. their resistance to oxidation and thus to the formation of oxidation products. This study concentrated on producing scientific data to support this safety evaluation process. In the absence of an official method for analyzing of phytosterol/stanol oxidation products, we first developed a new gas chromatographic - mass spectrometric (GC-MS) method. We then investigated factors affecting these compounds' oxidative stability in lipid-based food models in order to identify critical conditions under which significant oxidation reactions may occur. Finally, the oxidative stability of phytosterols and stanols in enriched foods during processing and storage was evaluated. Enriched foods covered a range of commercially available phytosterol/stanol ingredients, different heat treatments during food processing, and different multiphase food structures. The GC-MS method was a powerful tool for measuring the oxidative stability. Data obtained in food model studies revealed that the critical factors for the formation and distribution of the main secondary oxidation products were sterol structure, reaction temperature, reaction time, and lipid matrix composition. Under all conditions studied, phytostanols as saturated compounds were more stable than unsaturated phytosterols. In addition, esterification made phytosterols more reactive than free sterols at low temperatures, while at high temperatures the situation was the reverse. Generally, oxidation reactions were more significant at temperatures above 100°C. At lower temperatures, the significance of these reactions increased with increasing reaction time. The effect of lipid matrix composition was dependent on temperature; at temperatures above 140°C, phytosterols were more stable in an unsaturated lipid matrix, whereas below 140°C they were more stable in a saturated lipid matrix. At 140°C, phytosterols oxidized at the same rate in both matrices. Regardless of temperature, phytostanols oxidized more in an unsaturated lipid matrix. Generally, the distribution of oxidation products seemed to be associated with the phase of overall oxidation. 7-ketophytosterols accumulated when oxidation had not yet reached the dynamic state. Once this state was attained, the major products were 5,6-epoxyphytosterols and 7-hydroxyphytosterols. The changes observed in phytostanol oxidation products were not as informative since all stanol oxides quantified represented hydroxyl compounds. The formation of these secondary oxidation products did not account for all of the phytosterol/stanol losses observed during the heating experiments, indicating the presence of dimeric, oligomeric or other oxidation products, especially when free phytosterols and stanols were heated at high temperatures. Commercially available phytosterol/stanol ingredients were stable during such food processes as spray-drying and ultra high temperature (UHT)-type heating and subsequent long-term storage. Pan-frying, however, induced phytosterol oxidation and was classified as a rather deteriorative process. Overall, the findings indicated that although phytosterols and stanols are stable in normal food processing conditions, attention should be paid to their use in frying. Complex interactions between other food constituents also suggested that when new phytosterol-enriched foods are developed their oxidative stability must first be established. The results presented here will assist in choosing safe conditions for phytosterol/stanol enrichment.
Resumo:
Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5+/-0.3) to 10(1.1+/-0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 microm membrane, to investigate membrane filtration as a possible sanitation technique.
Resumo:
This presentation outlines recent achievements in development of tools, protocols and methods to monitoring and benchmark food prices and affordability globally under International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support(INFORMAS)
Resumo:
Symposium co-ordinated by The International Network for Food and Obesity/NCDs Research, Monitoring and Action Support (INFORMAS) Purpose Global monitoring of the price and affordability of foods, meals and diets is urgently needed. There are major methodological challenges in developing robust, cost-effective, standardized, and policy relevant tools, pertinent to nutrition, obesity, and diet-related non-communicable diseases and their inequalities. There is increasing pressure to take into account environmental sustainability. Changes in price differentials and affordability need to be comparable between and within countries and over time. Robust tools could provide baseline data for monitoring and evaluating structural, economic and social policies at the country/regional and household levels. INFORMAS offers one framework for consideration.
Resumo:
This paper considers the optimal allocation of a given amount of foreign aid between two recipient countries. It is shown that, given consumer preferences, a country following a more restrictive trade policy would receive a smaller share of the aid if the donor country maximises its own welfare in allocating aid. If, on the other hand, the donor country allocates aid in order to maximize the sum of the welfare of the two recipient countries, the result is just the opposite. Finally, we analyze the situation where the recipient countries compete with each other for the given amount of aid. It is shown that this competition tends to lower the level of optimal tariffs in the recipient countries.
Resumo:
Industrial ecology is an important field of sustainability science. It can be applied to study environmental problems in a policy relevant manner. Industrial ecology uses ecosystem analogy; it aims at closing the loop of materials and substances and at the same time reducing resource consumption and environmental emissions. Emissions from human activities are related to human interference in material cycles. Carbon (C), nitrogen (N) and phosphorus (P) are essential elements for all living organisms, but in excess have negative environmental impacts, such as climate change (CO2, CH4 N2O), acidification (NOx) and eutrophication (N, P). Several indirect macro-level drivers affect emissions change. Population and affluence (GDP/capita) often act as upward drivers for emissions. Technology, as emissions per service used, and consumption, as economic intensity of use, may act as drivers resulting in a reduction in emissions. In addition, the development of country-specific emissions is affected by international trade. The aim of this study was to analyse changes in emissions as affected by macro-level drivers in different European case studies. ImPACT decomposition analysis (IPAT identity) was applied as a method in papers I III. The macro-level perspective was applied to evaluate CO2 emission reduction targets (paper II) and the sharing of greenhouse gas emission reduction targets (paper IV) in the European Union (EU27) up to the year 2020. Data for the study were mainly gathered from official statistics. In all cases, the results were discussed from an environmental policy perspective. The development of nitrogen oxide (NOx) emissions was analysed in the Finnish energy sector during a long time period, 1950 2003 (paper I). Finnish emissions of NOx began to decrease in the 1980s as the progress in technology in terms of NOx/energy curbed the impact of the growth in affluence and population. Carbon dioxide (CO2) emissions related to energy use during 1993 2004 (paper II) were analysed by country and region within the European Union. Considering energy-based CO2 emissions in the European Union, dematerialization and decarbonisation did occur, but not sufficiently to offset population growth and the rapidly increasing affluence during 1993 2004. The development of nitrogen and phosphorus load from aquaculture in relation to salmonid consumption in Finland during 1980 2007 was examined, including international trade in the analysis (paper III). A regional environmental issue, eutrophication of the Baltic Sea, and a marginal, yet locally important source of nutrients was used as a case. Nutrient emissions from Finnish aquaculture decreased from the 1990s onwards: although population, affluence and salmonid consumption steadily increased, aquaculture technology improved and the relative share of imported salmonids increased. According to the sustainability challenge in industrial ecology, the environmental impact of the growing population size and affluence should be compensated by improvements in technology (emissions/service used) and with dematerialisation. In the studied cases, the emission intensity of energy production could be lowered for NOx by cleaning the exhaust gases. Reorganization of the structure of energy production as well as technological innovations will be essential in lowering the emissions of both CO2 and NOx. Regarding the intensity of energy use, making the combustion of fuels more efficient and reducing energy use are essential. In reducing nutrient emissions from Finnish aquaculture to the Baltic Sea (paper III) through technology, limits of biological and physical properties of cultured fish, among others, will eventually be faced. Regarding consumption, salmonids are preferred to many other protein sources. Regarding trade, increasing the proportion of imports will outsource the impacts. Besides improving technology and dematerialization, other viewpoints may also be needed. Reducing the total amount of nutrients cycling in energy systems and eventually contributing to NOx emissions needs to be emphasized. Considering aquaculture emissions, nutrient cycles can be partly closed through using local fish as feed replacing imported feed. In particular, the reduction of CO2 emissions in the future is a very challenging task when considering the necessary rates of dematerialisation and decarbonisation (paper II). Climate change mitigation may have to focus on other greenhouse gases than CO2 and on the potential role of biomass as a carbon sink, among others. The global population is growing and scaling up the environmental impact. Population issues and growing affluence must be considered when discussing emission reductions. Climate policy has only very recently had an influence on emissions, and strong actions are now called for climate change mitigation. Environmental policies in general must cover all the regions related to production and impacts in order to avoid outsourcing of emissions and leakage effects. The macro-level drivers affecting changes in emissions can be identified with the ImPACT framework. Statistics for generally known macro-indicators are currently relatively well available for different countries, and the method is transparent. In the papers included in this study, a similar method was successfully applied in different types of case studies. Using transparent macro-level figures and a simple top-down approach are also appropriate in evaluating and setting international emission reduction targets, as demonstrated in papers II and IV. The projected rates of population and affluence growth are especially worth consideration in setting targets. However, sensitivities in calculations must be carefully acknowledged. In the basic form of the ImPACT model, the economic intensity of consumption and emission intensity of use are included. In seeking to examine consumption but also international trade in more detail, imports were included in paper III. This example demonstrates well how outsourcing of production influences domestic emissions. Country-specific production-based emissions have often been used in similar decomposition analyses. Nevertheless, trade-related issues must not be ignored.
Resumo:
The 17th Biennial Conference of the International Institute of Fisheries Economics and Trade (IIFET) was held in Brisbane in July 2014. IIFET is the principal international association for fisheries economics, and the biennial conference is an opportunity for the best fisheries economists in the world to meet and share their ideas. The conference was organised by CSIRO, QUT, UTAS, University of Adelaide and KG Kailis Ltd. This is the first time the conference has been held in Australia. The conferences covered a wide range of topics of relevance to Australia. These included studies of fishery management systems around the world, identified key issues in aquaculture and marine biodiversity conservation, and provided a forum for new modelling and theoretical approaches to analysing fisheries problems to be presented. The theme of the conference was Towards Ecosystem Based Management of Fisheries: What Role can Economics Play? Several sessions were dedicated to modelling socio-ecological systems, and two keynote speakers were invited to present the latest thinking in the area. In this report, the key features of the conference are outlined.
Resumo:
This chapter defines food literacy and its components using the empirical data collected in two studies undertaken in 2010 and 2011 as part of the author’s PhD thesis. The first was a Delphi study of Australian food experts and the second was a study of young adults across a spectrum of disadvantage. Defining food literacy and identifying its components was an iterative process. At different times throughout the research, each study informed the other. This chapter will describe the components of food literacy, the data used to identify them and how they combined to produce a definition of food literacy.
Resumo:
The nutritional quality of the product as well as other quality attributes like microbiological and sensory quality are essential factors in baby food industry, and therefore different alternative sterilizing methods for conventional heating processes are of great interest in this food sector. This report gives an overview on different sterilization techniques for baby food. The report is a part of the work done in work package 3 ”QACCP Analysis Processing: Quality – driven distribution and processing chain analysis“ in the Core Organic ERANET project called Quality analysis of critical control points within the whole food chain and their impact on food quality, safety and health (QACCP). The overall objective of the project is to optimise organic production and processing in order to improve food safety as well as nutritional quality and increase health promoting aspects in consumer products. The approach will be a chain analysis approach which addresses the link between farm and fork and backwards from fork to farm. The objective is to improve product related quality management in farming (towards testing food authenticity) and processing (towards food authenticity and sustainable processes. The articles in this volume do not necessarily reflect the Core Organic ERANET’s views and in no way anticipate the Core Organic ERANET’s future policy in this area. The contents of the articles in this volume are the sole responsibility of the authors. The information contained here in, including any expression of opinion and any projection or forecast, has been obtained from sources believed by the authors to be reliable but is not guaranteed as to accuracy or completeness. The information is supplied without obligation and on the understanding that any person who acts upon it or otherwise changes his/her position in reliance thereon does so entirely at his/her own risk. The writers gratefully acknowledge the financial support from the Core Organic Funding Body: Ministry of Agriculture and Forestry, Finland, Swiss Federal Office for Agriculture, Switzerland and Federal Ministry of Consumer Protection, Food and Agriculture, Germany.
Resumo:
There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed. (C) 2010 Elsevier Ltd. All rights reserved.