972 resultados para Film - documentary
Resumo:
A one-step thermal extrusion process has been investigated for the modification of starch with alcohol in order to improve the film properties. Unmodified starch/glycerol mixtures containing Methanol (MetOH), ethanol (EtOH) and their combinations (5, 10 and 15 wt%) were thermally extruded to produce thermoplastic. The final hot-pressed film showed increased stiffness and crystallinity, while having decreased moisture uptake due to oxidation and alcohol complexing molecular interactions. The Young’s Modulus, tensile strength and elongation at break increased by 60%, 15% and 32% respectively, for 5 wt% MetOH derived film, compared to the control. The film moisture content was reduced by up to 15 wt% for 5 wt% EtOH-derived film. Generally the crystallinity increased in the alcohol-derived films due to an increased complexing of alcohol with starch forming the VH polymorph. Fourier transform infra-red (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopic analysis were used to discuss the molecular interactions between the starch and alcohol molecules.
Resumo:
Digital Image
Resumo:
The nanometer scale surface topography of a solid substrate is known to influence the extent of bacterial attachment and their subsequent proliferation to form biofilms. As an extension of our previous work on the development of a novel organic polymer coating for the prevention of growth of medically significant bacteria on three-dimensional solid surfaces, this study examines the effect of surface coating on the adhesion and proliferation tendencies of Staphylococcus aureus and compares to those previously investigated tendencies of Pseudomonas aeruginosa on similar coatings. Radio frequency plasma enhanced chemical vapor deposition was used to coat the surface of the substrate with thin film of terpinen-4-ol, a constituent of tea-tree oil known to inhibit the growth of a broad range of bacteria. The presence of the coating decreased the substrate surface roughness from approximately 2.1 nm to 0.4 nm. Similar to P. aeruginosa, S. aureus presented notably different patterns of attachment in response to the presence of the surface film, where the amount of attachment, extracellular polymeric substance production, and cell proliferation on the coated surface was found to be greatly reduced compared to that obtained on the unmodified surface. This work suggests that the antimicrobial and antifouling coating used in this study could be effectively integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.
Resumo:
Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.
Resumo:
The effect of inclination on laminar film condensation over and under isothermal flat plates is investigated analytically. The complete set of Navier Stokes equations in two dimensions is considered. Analysed as a perturbation problem, the zero-order perturbation represents the boundary layer equations. First and second order perturbations are solved to bring about the leading edge effects. Corresponding velocity and temperature profiles are presented. The results show decrease in heat transfer with larger ∥inclinations∥ from the vertical. Comparison with experimental data of Gerstmann and Griffith indicates a closer agreement of the present results than the analytical results of the same authors.
Resumo:
Exposure to aqueous film forming foam (AFFF) was evaluated in 149 firefighters working at AFFF training facilities in Australia by analysis of PFOS and related compounds in serum. A questionnaire was designed to capture information about basic demographic factors, lifestyle factors and potential occupational exposure (such as work history and self-reported skin contact with foam). The results showed that a number of factors were associated with PFAA serum concentrations. Blood donation was found to be linked to low PFAA levels, and the concentrations of PFOS and PFHxS were found to be positively associated with years of jobs with AFFF contact. The highest levels of PFOS and PFHxS were one order of magnitude higher compared to the general population in Australia and Canada. Study participants who had worked ten years or less had levels of PFOS that were similar to or only slightly above those of the general population. This coincides with the phase out of 3M AFFF from all training facilities in 2003, and suggests that the exposures to PFOS and PFHxS in AFFF have declined in recent years. Self-reporting of skin contact and frequency of contact were used as an index of exposure. Using this index, there was no relationship between PFOS levels and skin exposure. This index of exposure is limited as it relies on self-report and it only considers skin exposure to AFFF, and does not capture other routes of potential exposure. Possible associations between serum PFAA concentrations and five biochemical outcomes were assessed. The outcomes were serum cholesterol, triglycerides, high-density lipoproteins, low density lipoproteins, and uric acid. No statistical associations between any of these endpoints and serum PFAA concentrations were observed.
Resumo:
A study of the essential features of piston rings in the cylinder liner of an internal combustion engine reveals that the lubrication problem posed by it is basically that of a slider bearing. According to steady-flow-hydrodynamics, viz. Image the oil film thickness becomes zero at the dead centre positions as the velocity, U = 0. In practice, however, such a phenomenon cannot be supported by consideration of the wear rates of pistion rings and cylinder liners. This can be explained by including the “squeeze” action term in the
Resumo:
Manuscript: "Jewish Americans, A Film Treatment". Treatment for a documentary film exploring how Jewish Americans see themselves, and their enormous contributions to and achievements in the USA.
Resumo:
Abstract is not available.
Resumo:
In this paper both documentary and natural proxy data have been used to improve the accuracy of palaeoclimatic knowledge in Finland since the 18th century. Early meteorological observations from Turku (1748-1800) were analyzed first as a potential source of climate variability. The reliability of the calculated mean temperatures was evaluated by comparing them with those of contemporary temperature records from Stockholm, St. Petersburg and Uppsala. The resulting monthly, seasonal and yearly mean temperatures from 1748 to 1800 were compared with the present day mean values (1961-1990): the comparison suggests that the winters of the period 1749-1800 were 0.8 ºC colder than today, while the summers were 0.4 ºC warmer. Over the same period, springs were 0.9 ºC and autumns 0.1 ºC colder than today. Despite their uncertainties when compared with modern meteorological data, early temperature measurements offer direct and daily information about the weather for all months of the year, in contrast with other proxies. Secondly, early meteorological observations from Tornio (1737-1749) and Ylitornio (1792-1838) were used to study the temporal behaviour of the climate-tree growth relationship during the past three centuries in northern Finland. Analyses showed that the correlations between ring widths and mid-summer (July) temperatures did not vary significantly as a function of time. Early (June) and late summer (August) mean temperatures were secondary to mid-summer temperatures in controlling the radial growth. According the dataset used, there was no clear signature of temporally reduced sensitivity of Scots pine ring widths to mid-summer temperatures over the periods of early and modern meteorological observations. Thirdly, plant phenological data with tree-rings from south-west Finland since 1750 were examined as a palaeoclimate indicator. The information from the fragmentary, partly overlapping, partly nonsystematically biased plant phenological records of 14 different phenomena were combined into one continuous time series of phenological indices. The indices were found to be reliable indicators of the February to June temperature variations. In contrast, there was no correlation between the phenological indices and the precipitation data. Moreover, the correlations between the studied tree-rings and spring temperatures varied as a function of time and hence, their use in palaeoclimate reconstruction is questionable. The use of present tree-ring datasets for palaeoclimate purposes may become possible after the application of more sophisticated calibration methods. Climate variability since the 18th century is perhaps best seen in the fourth paper study of the multiproxy spring temperature reconstruction of south-west Finland. With the help of transfer functions, an attempt has been made to utilize both documentary and natural proxies. The reconstruction was verified with statistics showing a high degree of validity between the reconstructed and observed temperatures. According to the proxies and modern meteorological observations from Turku, springs have become warmer and have featured a warming trend since around the 1850s. Over the period of 1750 to around 1850, springs featured larger multidecadal low-frequency variability, as well as a smaller range of annual temperature variations. The coldest springtimes occurred around the 1840s and 1850s and the first decade of the 19th century. Particularly warm periods occurred in the 1760s, 1790s, 1820s, 1930s, 1970s and from 1987 onwards, although in this period cold springs occurred, such as the springs of 1994 and 1996. On the basis of the available material, long-term temperature changes have been related to changes in the atmospheric circulation, such as the North Atlantic Oscillation (February-June).
Resumo:
For the purposes of obtaining a number of components with nearly identical thickness distributions over the substrate area and of minimizing the inhomogeneities of the film, it is logical to presume that a substrate rotating on its own axis and revolving around another axis will give more uniformity in film thickness than a substrate only revolving around one axis. In relation to the practical applications, an investigation has been undertaken to study the refinement that can be achieved by using a planar planetary substrate holder. It is shown theoretically that the use of the planetary substrate holder under ideal conditions of source and geometry does not offer any further improvement in uniformity of thickness over the conventional rotary work-holder. It is also shown that the geometrical parameters alone have little influence over the uniformity achieved on a planetary substrate, because of the complex cyclidal motion of any point on it. However, for any given geometry, a non-integral speed ratio of the planetary substrate and the work-holder shows considerably less variation in thickness over the substrate area.
Resumo:
The design and implementation of a complete gas sensor system for liquified petroleum gas (LPG) gas sensing are presented. The system consists of a SnO2 transducer, a lowcost heater, an application specific integrated circuit (ASIC) with front-end interface circuitry, and a microcontroller interface for data logging. The ASIC includes a relaxation-oscillator-based heater driver circuit that is capable of controlling the sensor operating temperature from 100degC to 425degC. The sensor readout circuit in the ASIC, which is based on the resistance to time conversion technique, has been designed to measure the gas sensor response over three orders of resistance change during its interaction with gases.