849 resultados para Exclusion process, Multi-species, Multi-scale modelling
“Deborah Numbers”, Coupling Multiple Space and Time Scales and Governing Damage Evolution to Failure
Resumo:
Two different spatial levels are involved concerning damage accumulation to eventual failure. nucleation and growth rates of microdamage nN* and V*. It is found that the trans-scale length ratio c*/L does not directly affect the process. Instead, two independent dimensionless numbers: the trans-scale one * * ( V*)including the * **5 * N c V including mesoscopic parameters only, play the key role in the process of damage accumulation to failure. The above implies that there are three time scales involved in the process: the macroscopic imposed time scale tim = /a and two meso-scopic time scales, nucleation and growth of damage, (* *4) N N t =1 n c and tV=c*/V*. Clearly, the dimensionless number De*=tV/tim refers to the ratio of microdamage growth time scale over the macroscopically imposed time scale. So, analogous to the definition of Deborah number as the ratio of relaxation time over external one in rheology. Let De be the imposed Deborah number while De represents the competition and coupling between the microdamage growth and the macroscopically imposed wave loading. In stress-wave induced tensile failure (spallation) De* < 1, this means that microdamage has enough time to grow during the macroscopic wave loading. Thus, the microdamage growth appears to be the predominate mechanism governing the failure. Moreover, the dimensionless number D* = tV/tN characterizes the ratio of two intrinsic mesoscopic time scales: growth over nucleation. Similarly let D be the “intrinsic Deborah number”. Both time scales are relevant to intrinsic relaxation rather than imposed one. Furthermore, the intrinsic Deborah number D* implies a certain characteristic damage. In particular, it is derived that D* is a proper indicator of macroscopic critical damage to damage localization, like D* ∼ (10–3~10–2) in spallation. More importantly, we found that this small intrinsic Deborah number D* indicates the energy partition of microdamage dissipation over bulk plastic work. This explains why spallation can not be formulated by macroscopic energy criterion and must be treated by multi-scale analysis.
Resumo:
The paper develops the basis for a self-consistent, operationally useful, reactive pollutant dispersion model, for application in urban environments. The model addresses the multi-scale nature of the physical and chemical processes and the interaction between the different scales. The methodology builds on existing techniques of source apportionment in pollutant dispersion and on reduction techniques of detailed chemical mechanisms. © 2005 Published by Elsevier Ltd.
Resumo:
This paper studies how to more effectively invert seismic data and predict reservoir under complicated sedimentary environment, complex rock physical relationships and fewer drills in offshore areas of China. Based on rock physical and seismic amplitude-preserving process, and according to depositional system and laws of hydrocarbon reservoir, in the light of feature of seismic inversion methods present applied, series methods were studied. A joint inversion technology for complex geological condition had been presented, at the same time the process and method system for reservoir prediction had been established. This method consists four key parts. 1)We presented the new conception called generalized wave impedance, established corresponding inversion process, and provided technical means for joint inversion lithology and petrophysical on complex geological condition. 2)At the aspect of high-resolution nonlinear seismic wave impedance joint inversion, this method used a multistage nonlinear seismic convolution model rather than conventional primary structure Robinson seismic convolution model, and used Caianiello neural network implement inversion. Based on the definition of multistage positive and negative wavelet, it adopted both deterministic and statistical physical mechanism, direct inversion and indirect inversion. It integrated geological knowledge, rock physical theory, well data, and seismic data, and improved the resolution and anti-noise ability of wave impedence inversion. 3)At the aspect of high-resolution nonlinear reservoir physical property joint inversion, this method used nonlinear rock physical model which introduced convolution model into the relationship between wave impedance and porosity/clay. Through multistage decomposition, it handles separately the large- and small-scale components of the impedance-porosity/clay relationships to achieve more accurate rock physical relationships. By means of bidirectional edge detection with wavelets, it uses the Caianiello neural network to finish statistical inversion with combined applications of model-based and deconvolution-based methods. The resulted joint inversion scheme can integrate seismic data, well data, rock physical theory, and geological knowledge for estimation of high-resolution petrophysical parameters. 4)At the aspect of risk assessment of lateral reservoir prediction, this method integrated the seismic lithology identification, petrophysical prediction, multi-scale decomposition of petrophysical parameters, P- and H-spectra, and the match relationship of data got from seismics, well logging and geology. It could describe the complexity of medium preferably. Through applications of the joint inversion of seismic data for lithologic and petrophysical parameters in several selected target areas, the resulted high-resolution lithologic and petrophysical sections(impedance, porosity, clay) show that the joint inversion can significantly improve the spatial description of reservoirs in data sets involving complex deposits. It proved the validity and practicality of this method adequately.
Resumo:
Offshore seismic exploration is full of high investment and risk. And there are many problems, such as multiple. The technology of high resolution and high S/N ratio on marine seismic data processing is becoming an important project. In this paper, the technology of multi-scale decomposition on both prestack and poststack seismic data based on wavelet and Hilbert-Huang transform and the theory of phase deconvolution is proposed by analysis of marine seismic exploration, investigation and study of literatures, and integration of current mainstream and emerging technology. Related algorithms are studied. The Pyramid algorithm of decomposition and reconstruction had been given by the Mallat algorithm of discrete wavelet transform In this paper, it is introduced into seismic data processing, the validity is shown by test with field data. The main idea of Hilbert-Huang transform is the empirical mode decomposition with which any complicated data set can be decomposed into a finite and often small number of intrinsic mode functions that admit well-behaved Hilbert transform. After the decomposition, a analytical signal is constructed by Hilbert transform, from which the instantaneous frequency and amplitude can be obtained. And then, Hilbert spectrum. This decomposition method is adaptive and highly efficient. Since the decomposition is based on the local characteristics of the time scale of data, it is applicable to nonlinear and non-stationary processes. The phenomenons of fitting overshoot and undershoot and end swings are analyzed in Hilbert-Huang transform. And these phenomenons are eliminated by effective method which is studied in the paper. The technology of multi-scale decomposition on both prestack and poststack seismic data can realize the amplitude preserved processing, enhance the seismic data resolution greatly, and overcome the problem that different frequency components can not restore amplitude properly uniformly in the conventional method. The method of phase deconvolution, which has overcome the minimum phase limitation in traditional deconvolution, approached the base fact well that the seismic wavelet is phase mixed in practical application. And a more reliable result will be given by this method. In the applied research, the high resolution relative amplitude preserved processing result has been obtained by careful analysis and research with the application of the methods mentioned above in seismic data processing in four different target areas of China Sea. Finally, a set of processing flow and method system was formed in the paper, which has been carried on in the application in the actual production process and has made the good progress and the huge economic benefit.
Resumo:
Pre-stack seismic inversion has become the emphasis and hotspot owing to the exploration & exploitation of oil field and the development of seismic technology. Pre-stack seismic inversion has the strongpoint of making the most of amplitude versus offset compared with the post-stack method. In this dissertation, the three parameters were discussed from multi-angle reflectance of P-wave data based on Zoeppritz’s and Aki & Richard’s equation, include P-wave velocity, S-wave velocity, and density. The three parameters are inversed synchronously from the pre-stack multi-angle P-wave data, based on rockphysics model and aimed at the least remnant difference between model simulation and practical data. In order to improve the stability of inversion and resolution to thin bed, several techniques were employed, such as the wavelet transform with multi-scale function, adding the Bayesian soft constraint and hard constraints (the horizon, structure and so on) to the inversion process. Being the result, the uncertainty of the resolution is reduced, the reliability and precision are improved, the significance of parameters becomes clearer. Meeting to the fundamental requirement of pre-stack inversion, some research in rockphysics are carried out which covered the simulation and inversion of S-wave velocity, the influence of pore fluids to geophysical parameters, and the slecting and analyzing of sensitive parameters. The difference between elastic wave equation modeling and Zoeppritz equation method is also compared. A series of key techniques of pre-stack seismic inversion and description were developed, such as attributes optimization, fluid factors, etc. All the techniques mentioned above are assembled to form a technique sets and process of synchronous pre-stack seismic inversion method of the three parameters based on rock physics and model simulation. The new method and technology were applied in many areas with various reservoirs, obtained both geological and economic significance, which proved to be valid and rational. This study will promote the pre-stack inversion technology and it’s application in hidden reservoirs exploration, face good prospects for development and application.
Resumo:
In modem signal Processing,non-linear,non-Gaussian and non-stable signals are usually the analyzed and Processed objects,especially non-stable signals. The convention always to analyze and Process non-stable signals are: short time Fourier transform,Wigner-Ville distribution,wavelet Transform and so on. But the above three algorithms are all based on Fourier Transform,so they all have the shortcoming of Fourier Analysis and cannot get rid of the localization of it. Hilbert-Huang Transform is a new non-stable signal processing technology,proposed by N. E. Huang in 1998. It is composed of Empirical Mode Decomposition (referred to as EMD) and Hilbert Spectral Analysis (referred to as HSA). After EMD Processing,any non-stable signal will be decomposed to a series of data sequences with different scales. Each sequence is called an Intrinsic Mode Function (referred to as IMF). And then the energy distribution plots of the original non-stable signal can be found by summing all the Hilbert spectrums of each IMF. In essence,this algorithm makes the non-stable signals become stable and decomposes the fluctuations and tendencies of different scales by degrees and at last describes the frequency components with instantaneous frequency and energy instead of the total frequency and energy in Fourier Spectral Analysis. In this case,the shortcoming of using many fake harmonic waves to describe non-linear and non-stable signals in Fourier Transform can be avoided. This Paper researches in the following parts: Firstly,This paper introduce the history and development of HHT,subsequently the characters and main issues of HHT. This paper briefly introduced the basic realization principles and algorithms of Hilbert-Huang transformation and confirms its validity by simulations. Secondly, This paper discuss on some shortcoming of HHT. By using FFT interpolation, we solve the problem of IMF instability and instantaneous frequency undulate which are caused by the insufficiency of sampling rate. As to the bound effect caused by the limitation of envelop algorithm of HHT, we use the wave characteristic matching method, and have good result. Thirdly, This paper do some deeply research on the application of HHT in electromagnetism signals processing. Based on the analysis of actual data examples, we discussed its application in electromagnetism signals processing and noise suppression. Using empirical mode decomposition method and multi-scale filter characteristics can effectively analyze the noise distribution of electromagnetism signal and suppress interference processing and information interpretability. It has been founded that selecting electromagnetism signal sessions using Hilbert time-frequency energy spectrum is helpful to improve signal quality and enhance the quality of data.
Resumo:
A novel method that combines shape-based object recognition and image segmentation is proposed for shape retrieval from images. Given a shape prior represented in a multi-scale curvature form, the proposed method identifies the target objects in images by grouping oversegmented image regions. The problem is formulated in a unified probabilistic framework and solved by a stochastic Markov Chain Monte Carlo (MCMC) mechanism. By this means, object segmentation and recognition are accomplished simultaneously. Within each sampling move during the simulation process,probabilistic region grouping operations are influenced by both the image information and the shape similarity constraint. The latter constraint is measured by a partial shape matching process. A generalized parallel algorithm by Barbu and Zhu,combined with a large sampling jump and other implementation improvements, greatly speeds up the overall stochastic process. The proposed method supports the segmentation and recognition of multiple occluded objects in images. Experimental results are provided for both synthetic and real images.
Resumo:
To investigate women’s help seeking behavior (HSB) following self discovery of a breast symptom and determine the associated influencing factors. A descriptive correlation design was used to ascertain the help seeking behavior (HSB) and the associated influencing factors of a sample of women (n = 449) with self discovered breast symptoms. The study was guided by the ‘Help Seeking Behaviour and Influencing Factors” conceptual framework (Facione et al., 2002; Meechan et al., 2003, 2002; Leventhal, Brissette and Leventhal, 2003 and O’Mahony and Hegarty, 2009b). Data was collected using a researcher developed multi-scale questionnaire package to ascertain women’s help seeking behavior on self discovery of a breast symptom and determine the factors most associated with HSB. Factors examined include: socio-demographics, knowledge and beliefs (regarding breast symptom; breast changes associated with breast cancer; use of alternative help seeking behaviours and presence or absence of a family history of breast cancer),emotional responses, social factors, health seeking habits and health service system utilization and help seeking behavior. A convenience sample (n = 449 was obtained by the researcher from amongst women attending the breast clinics of two large urban hospitals within the Republic of Ireland. All participants had self-discovered breast symptoms and no previous history of breast cancer. The study identified that while the majority of women (69.9%; n=314) sought help within one month, 30.1% (n=135) delayed help seeking for more than one month following self discovery of their breast symptom. The factors most significantly associated with HSB were the presenting symptom of ‘nipple indrawn/changes’ (p = 0.005), ‘ignoring the symptom and hoping it would go away’ (p < 0.001), the emotional response of being ‘afraid@ on symptom discovery (p = 0.005) and the perception/belief in longer symptom duration (p = 0.023). It was found that women who presented with an indrawn/changed nipple were more likely to delay (OR = 4.81) as were women who ‘ignored the symptoms and hoped it would go away’ (OR = 10.717). Additionally, the longer women perceived that their symptom would last, they more likely they were to delay (OR = 1.18). Conversely, being afraid following symptom discovery was associated with less delay (OR = 0.37; p=0.005). This study provides further insight into the HSB of women who self discovered breast symptoms. It highlights the complexity of the help seeking process, indicating that is not a linear event but is influenced by multiple factors which can have a significant impact on the outcomes in terms of whether women delay or seek help promptly. The study further demonstrates that delayed HSB persists amongst women with self discovered breast symptoms. This has important implications for continued emphasis on the promotion of breast awareness, prompt help seeking for self discovered breast symptoms and early detection and treatment of breast cancer, amongst women of all ages.
Resumo:
Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an inter-disciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterise a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual level responses, while acidification has a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multi-scale responses to multiple stressors, in an ecosystem context.
Resumo:
Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an inter-disciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterise a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual level responses, while acidification has a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multi-scale responses to multiple stressors, in an ecosystem context.
Resumo:
The present study examines those features which promote bat feeding in agricultural riparian areas and the riparian habitat associations of individual species. Activity of Nathusius' pipistrelle (Pipistrellus nathusii), common pipistrelle (Pipistrellus pipistrellus), soprano pipistrelle (Pipistrellus pygmaeus), Leisler's bat (Nyctalus leisleri), and Myotis species (Myotis sp.) were recorded, and their habitat associations both "between" and "within" riparian areas were analyzed. General feeding activity was associated with reduced agricultural intensity, riparian hedgerow provision, and habitat diversity. Significant habitat associations for P. pipistrellus were observed only within riparian areas. Myotis species and P. pygmaeus were significantly related to indices of landscape structure and riparian hedgerow across spatial scales. Myotis species were also related to lower levels of riffle flow at both scales of analysis. The importance of these variables changed significantly, however, between analysis scales. The multi-scale investigation of species-habitat associations demonstrated the necessity to consider habitat and landscape characteristics across spatial scales to derive appropriate conservation plans.
Resumo:
BACKGROUND: Family-based cardiac screening programmes for persons at risk for genetic cardiac diseases are now recommended. However, the psychological wellbeing and health related quality of life (QoL) of such screened patients is poorly understood, especially in younger patients. We sought to examine wellbeing and QoL in a representative group of adults aged 16 and over in a dedicated family cardiac screening clinic.
METHODS: Prospective survey of consecutive consenting patients attending a cardiac screening clinic, over a 12 month period. Data were collected using two health measurement tools: the Short Form 12 (version 2) and the Hospital Anxiety and Depression Scale (HADS), along with baseline demographic and screening visit-related data. The HADS and SF-12v.2 outcomes were compared by age group. Associations with a higher HADS score were examined using logistic regression, with multi-level modelling used to account for the family-based structure of the data.
RESULTS: There was a study response rate of 86.6%, with n=334 patients providing valid HADS data (valid response rate 79.5%), and data on n=316 retained for analysis. One-fifth of patients were aged under 25 (n=61). Younger patients were less likely than older to describe significant depression on their HADS scale (p<0.0001), although there were overall no difference between the prevalence of a significant HADS score between the younger and older age groups (18.0% vs 20.0%, p=0.73). Significant positive associates of a higher HADS score were having lower educational attainment, being single or separated, and being closely related to the family proband. Between-family variance in anxiety and depression scores was greater than within-family variance.
CONCLUSIONS: High levels of anxiety were seen amongst patients attending a family-based cardiac screening clinic.Younger patients also had high rates of clinically significant anxiety. Higher levels of anxiety and depression tends to run in families, and this has implications for family screening and intervention programmes.
Resumo:
In this paper we present a monocular vision system for a navigation aid. The system assists blind persons in following paths and sidewalks, and it alerts the user to moving obstacles which may be on collision course. Path borders and the vanishing point are de-tected by edges and an adapted Hough transform. Opti-cal flow is detected by using a hierarchical, multi-scale tree structure with annotated keypoints. The tree struc-ture also allows to segregate moving objects, indicating where on the path the objects are. Moreover, the centre of the object relative to the vanishing point indicates whether an object is approaching or not.
Resumo:
A biological disparity energy model can estimate local depth information by using a population of V1 complex cells. Instead of applying an analytical model which explicitly involves cell parameters like spatial frequency, orientation, binocular phase and position difference, we developed a model which only involves the cells’ responses, such that disparity can be extracted from a population code, using only a set of previously trained cells with random-dot stereograms of uniform disparity. Despite good results in smooth regions, the model needs complementary processing, notably at depth transitions. We therefore introduce a new model to extract disparity at keypoints such as edge junctions, line endings and points with large curvature. Responses of end-stopped cells serve to detect keypoints, and those of simple cells are used to detect orientations of their underlying line and edge structures. Annotated keypoints are then used in the leftright matching process, with a hierarchical, multi-scale tree structure and a saliency map to segregate disparity. By combining both models we can (re)define depth transitions and regions where the disparity energy model is less accurate.
Resumo:
The Weather Research and Forecasting model, integrated online with chemistry module, is a multi-scale model suitable for both research and operational forecasts of meteorology and air quality. It is used by many institutions for a variety of applications. In this study, the WRF v3.5 with chemistry (WRF-Chem) is applied to the area of Poland, for a period of 3-20 July 2006, when high concentrations of ground level ozone were observed. The meteorological and chemistry simulations were initiated with ERA-Interim reanalysis and TNO MACC II emissions database, respectively. The model physical parameterization includes RRTM shortwave radiation, Kain-Fritsch cumulus scheme, Purdue Lin microphysics and ACM2 PBL, established previously as the optimal configuration. Chemical mechanism used for the study was RADM2 with MADE/SORGAM aerosols. Simulations were performed for three one-way nested domains covering Europe (36 km x 36 km), Central Europe (12 km x 12 km) and Poland (4 km x 4 km). The results from the innermost domain were analyzed and compared to measurements of ozone concentration at three stations in different environments. The results show underestimation of observed values and daily amplitude of ozone concentrations.