912 resultados para Euler angle
Resumo:
The reduced divergence angle of the photonic crystal vertical-cavity surface-emitting laser (PC-VCSEL) was investigated in both theory and experiment. The photonic crystal waveguide possessed the weakly guiding waveguide characteristic, which accounted for the reduction of the divergence angle. The three-dimensional finite-difference time-domain method was used to simulate the designed PC-VCSEL, and a calculated divergence angle of 5.2 degrees was obtained. The measured divergence angles of our fabricated PC-VCSEL were between 5.1 degrees and 5.5 degrees over the entire drive current range, consistent with the numerical results. This is the lowest divergence angle of the fabricated PC-VCSEL ever reported.
Resumo:
We have fabricated a resonant-cavity-enhanced photodiode (RCE-PD) with InGaAs quantum dots (QDs) as an active medium. This sort of QD-embedded RCE-PD is capable of a peak external quantum efficiency of 32% and responsivity of 0.27A/W at 1.058 mu m with a full width at half maximum (FWHM) of 5 nm. Angle-resolved photocurrent response eventually proves that with the detection angle changing from 0 degrees to 60 degrees, the peak-current wavelength shifts towards the short wavelength side by 37 nm, while the quantum efficiency remains larger than 15%.
Resumo:
The microstructures of hydrogenated microcrystalline silicon (tic-Si: H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD(HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering(SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si: H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si: H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45° tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.
Resumo:
A GaAs/AlGaAs two-dimensional electron gas (2 DEG) structure with the high mobility of mu(2K) = 1.78 x 10(6) cm(2)/Vs has been studied by low-temperature Hall and Shubnikov de Hass (SdH) measurements. Quantum lifetimes related to all-angle scattering events reduced from 0.64 ps to 0.52 ps after illuminating by Dingle plots, and transport lifetimes related to large-angle scattering events increasing from 42.3 ps to 67.8 ps. These results show that small-angle scattering events become stronger. It is clear that small-angle scattering events can cause the variation of the widths of the quantum Hall plateaus.
Resumo:
Many-beam dynamical simulations and observations have been made for large-angle convergent-beam electron diffraction (LACBED) imaging of crystal defects, such as stacking faults and dislocations. The simulations are based on a general matrix formulation of dynamical electron diffraction theory by Peng and Whelan, and the results are compared with experimental LACBED images of stacking faults and dislocations of Si angle crystals. Excellent agreement is achieved.
Resumo:
Magnetic multilayers [NixFe100-x/Mo-30] grown by dc-magnetron sputtering were investigated by x-ray small-angle reflection and high-angle diffraction. Structural parameters of the multilayers such as the superlattice periods, the interfacial roughness, and interplane distance were obtained. It was found that for our NixFe100-x/Mo system, the Mo layer has bcc structure with [110] preferential orientation, while the preferential orientation of the NixFe100-x layer changes from a fee structure with [111] preferential orientation to a bcc structure with [110] preferential orientation with decreasing values of x. An intermixing layer located in the interlayer region between the NixFe100-x and Mo layers exists in the multilayers, and its thickness is almost invariant with respect to an increase of Mo layer thickness and/or a decrease of x in the region of x greater than or equal to 39. The thickness of the intermixing layer falls to zero when x less than or equal to 23.
Resumo:
The theoretical analysis and experimental measurement on the incident angle dependence of quantum efficiency of GaAs based resonant cavity enhanced (RCE) photodetector is presented. By changing the angle of incoming light, about 40 nm wavelength variation of peak quantum efficiency is obtained. The peak quantum efficiency and optical bandwidth at different mode corresponding to different angle incidence is characterized with different absorption dependence on wavelength. The convenient angle tuning of resonant mode will be helpful to relax the strict constraint of RCE photodetector to light source with narrow emission spectrum such applications in space optical detections and communications.
Resumo:
To achieve high optical power as well as low vertical divergence angle, a new kind of optimized large optical cavity (LOC) structure is applied to a ridge waveguide 980nm InGaAs/GaAs/AlGaAs multi-quantum well laser. The optical power density in the waveguide is successfully reduced. The maximum output power is more than 400mW with a slope efficiency of 0.89W/A and the far-field vertical divergence angle is lowered to 23°.
Resumo:
Transmission Volume Phase Holographic Grating (VPHG) is adopted as spectral element in the real-time Optical Channel Performance Monitor (OCPM), which is in dire need in the Dense Wavelength -division-multiplexing(DATDM) system. And the tolerance of incident angle, which can be fully determined by two angles: 6 and (p, is finally inferred in this paper. Commonly, the default setting is that the incident plane is perpendicular to the fringes when the incident angle is mentioned. Now the situation out of the vertical is discussed. By combining the theoretic analysis of VPHG with its use in OCPM and changing 6 and (0 precisely in the computation and experiment, the two physical quantities which can fully specify the performance of VPHG the diffraction efficiency and the resolution, are analyzed. The results show that the diffraction efficiency varies greatly with the change of 6 or (p. But from the view of the whole C-band, only the peak diffraction efficiency drifts to another wavelength. As for the resolution, it deteriorates more rapidly than diffraction efficiency with the change of (p, while more slowly with the change of theta. Only if \phi\less than or equal to+/-1degrees and alpha(B) -0.5 less than or equal to theta less than or equal to alpha(B) + 0.5, the performance of the VPHG would be good enough to be used in OCPM system.