914 resultados para Error Probability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 1920s, Ronald Fisher developed the theory behind the p value and Jerzy Neyman and Egon Pearson developed the theory of hypothesis testing. These distinct theories have provided researchers important quantitative tools to confirm or refute their hypotheses. The p value is the probability to obtain an effect equal to or more extreme than the one observed presuming the null hypothesis of no effect is true; it gives researchers a measure of the strength of evidence against the null hypothesis. As commonly used, investigators will select a threshold p value below which they will reject the null hypothesis. The theory of hypothesis testing allows researchers to reject a null hypothesis in favor of an alternative hypothesis of some effect. As commonly used, investigators choose Type I error (rejecting the null hypothesis when it is true) and Type II error (accepting the null hypothesis when it is false) levels and determine some critical region. If the test statistic falls into that critical region, the null hypothesis is rejected in favor of the alternative hypothesis. Despite similarities between the two, the p value and the theory of hypothesis testing are different theories that often are misunderstood and confused, leading researchers to improper conclusions. Perhaps the most common misconception is to consider the p value as the probability that the null hypothesis is true rather than the probability of obtaining the difference observed, or one that is more extreme, considering the null is true. Another concern is the risk that an important proportion of statistically significant results are falsely significant. Researchers should have a minimum understanding of these two theories so that they are better able to plan, conduct, interpret, and report scientific experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of prediction is considered in a multidimensional setting. Extending an idea presented by Barndorff-Nielsen and Cox, a predictive density for a multivariate random variable of interest is proposed. This density has the form of an estimative density plus a correction term. It gives simultaneous prediction regions with coverage error of smaller asymptotic order than the estimative density. A simulation study is also presented showing the magnitude of the improvement with respect to the estimative method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Podeu consultar el document complet de la "XVI Setmana de Cinema Formatiu" a: http://hdl.handle.net/2445/22523

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo, continuando la línea investigadora acerca de las nociones derazón, conciencia y subjetividad en Descartes, tal como se ha defendido en otros artículos ya publicados, aporta un nuevo argumento a una línea de trabajo previamente iniciada, poniendo de relieve que el problema gnoseológico del error viene condicionado por la misma noción cartesiana de racionalidad, y que ésta dista mucho de lo que tradicionalmente se ha entendido como una racionalidad abstracta y formal, libre de los imperativos humanos. Por otro lado, y a la inversa, también se intenta mostrar como el hecho del error contribuye, cartesianamente hablando, a definir un modelo de racionalidad profundamentehumanizada. El artículo, tras una introducción, se propone analizar las relaciones entre los conceptos básicos de racionalidad, dogma, y naturaleza, lo que permitirá a continuación dejar constancia de la copertenencia entre racionalidad y error, para acabar viendo como la libertad humana es la vez, y para ambos, su fundamento último.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducción. El concepto de comorbilidad en trastornos del neurodesarrollo como el autismo resulta, en ocasiones, ambiguo. La coocurrencia entre ansiedad y autismo es clínicamente signifi cativa; sin embargo, no siempre es fácil diferenciar si se trata de una comorbilidad"real", donde las dos condiciones comórbidas son fenotípica y etiológicamente idénticas a lo que supondría dicha ansiedad en personas con un desarrollo neurotípico; si se trata de una ansiedad fenotípicamente alterada por los procesos patogénicos de los trastornos del espectro autista, resultando en una variante específica de éstos, o si partimos de una comorbilidad falsa derivada de diagnósticos diferenciales poco exactos. Desarrollo. El artículo plantea dos hipótesis explicativas de dicha coocurrencia, que se retroalimentan entre sí y que no dejan de ser una refl exión en voz alta partiendo de las evidencias científi cas con las que contamos. La primera es la hipótesis del"error social", y considera que el desajuste en el comportamiento social de las personas con autismofruto de alteraciones en los procesos de cognición social contribuye a exacerbar la ansiedad en el autismo. La segunda hipótesis, la de la carga alostática, defi ende que la ansiedad es la respuesta a un estrés crónico, al desgaste o agotamiento que produce la hiperactivación de ciertas estructuras del sistema límbico. Conclusiones. Las manifestaciones prototípicas de la ansiedad presentes en la persona con autismo no siempre se relacionan con las mismas variables biopsicosociales evidenciadas en personas sin autismo. Las evidencias apuntan a respuestas hiperreactivas de huida o lucha (hipervigilancia) cuando la persona se encuentra fuera de su zona de confort, y apoyan la hipótesis del"error social" y de la descompensación del mecanismo de alostasis que permite afrontar el estrés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When researchers introduce a new test they have to demonstrate that it is valid, using unbiased designs and suitable statistical procedures. In this article we use Monte Carlo analyses to highlight how incorrect statistical procedures (i.e., stepwise regression, extreme scores analyses) or ignoring regression assumptions (e.g., heteroscedasticity) contribute to wrong validity estimates. Beyond these demonstrations, and as an example, we re-examined the results reported by Warwick, Nettelbeck, and Ward (2010) concerning the validity of the Ability Emotional Intelligence Measure (AEIM). Warwick et al. used the wrong statistical procedures to conclude that the AEIM was incrementally valid beyond intelligence and personality traits in predicting various outcomes. In our re-analysis, we found that the reliability-corrected multiple correlation of their measures with personality and intelligence was up to .69. Using robust statistical procedures and appropriate controls, we also found that the AEIM did not predict incremental variance in GPA, stress, loneliness, or well-being, demonstrating the importance for testing validity instead of looking for it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is studied. The performance of the ten lag-one autocorrelation estimators is compared in terms of Mean Square Error (combining bias and variance) using data series generated by Monte Carlo simulation. The results show that there is not a single optimal estimator for all conditions, suggesting that the estimator ought to be chosen according to sample size and to the information available of the possible direction of the serial dependence. Additionally, the probability of labelling an actually existing autocorrelation as statistically significant is explored using Monte Carlo sampling. The power estimates obtained are quite similar among the tests associated with the different estimators. These estimates evidence the small probability of detecting autocorrelation in series with less than 20 measurement times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

" Has comes un error" . " Estas en un error" . " És un error votar aquest parti!" . " És un error votar" . " És un error afirmar que 2 + 3 = 9" . " És un error afirmar que és un error afirmar que 2 + 3 = 5" . " És un error afirmar que, quan dividim, sempre obtenim un nombre més petit" . " És un error que l'existencia precedeixi l'essencia" . " És un error que vulguis enganyar-me" . " És un error afirmar que a = a" ... i així fins a acomplir les il'limitades possibilitats del llenguatge. Qualsevol judici, en la mesura que té un significat, en la mesura que és assertori, és susceptible de ser erroni, de ser fals. Peró, l'error té sempre la mateixa qualitat? Us hem proposat un reguitzell d'exemples. És obvi (si excloem la mentida, que no és error, sinó mentida) que el significat d'" error" (o el seu valor) no és identic en tots els casos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter to the Editor comments on the article Practical relevance of pattern uniqueness in forensic science by P.T. Jayaprakash (Forensic Science International, in press).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract